Skip to content

Commit

Permalink
Merge broadcast_like docstrings, analyze implementation problem (#3130)
Browse files Browse the repository at this point in the history
* Merge broadcast_like docstrings, analyze implementation problem

* PEP8 fixes

* PEP8 fixes

* Fix dataarray bug

* Fix broadcast_like logic error

* Remove unused import

* Add back additional broadcast_like tests

* lint
  • Loading branch information
DavidMertz authored and shoyer committed Jul 16, 2019
1 parent 539fb4a commit 8da3f67
Show file tree
Hide file tree
Showing 4 changed files with 64 additions and 18 deletions.
3 changes: 2 additions & 1 deletion doc/whats-new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@ New functions/methods
~~~~~~~~~~~~~~~~~~~~~

- Added :py:meth:`DataArray.broadcast_like` and :py:meth:`Dataset.broadcast_like`.
By `Deepak Cherian <https://github.com/dcherian>`_.
By `Deepak Cherian <https://github.com/dcherian>`_ and `David Mertz
<http://github.com/DavidMertz>`_.

Enhancements
~~~~~~~~~~~~
Expand Down
47 changes: 44 additions & 3 deletions xarray/core/dataarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -998,25 +998,66 @@ def sel_points(self, dim='points', method=None, tolerance=None,
def broadcast_like(self,
other: Union['DataArray', Dataset],
exclude=None) -> 'DataArray':
"""Broadcast this DataArray against another Dataset or DataArray.
"""Broadcast a DataArray to the shape of another DataArray or Dataset
This is equivalent to xr.broadcast(other, self)[1]
xarray objects are broadcast against each other in arithmetic
operations, so this method is not be necessary for most uses.
If no change is needed, the input data is returned to the output
without being copied.
If new coords are added by the broadcast, their values are
NaN filled.
Parameters
----------
other : Dataset or DataArray
Object against which to broadcast this array.
exclude : sequence of str, optional
Dimensions that must not be broadcasted
"""
Returns
-------
new_da: xr.DataArray
Examples
--------
>>> arr1
<xarray.DataArray (x: 2, y: 3)>
array([[0.840235, 0.215216, 0.77917 ],
[0.726351, 0.543824, 0.875115]])
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) <U1 'a' 'b' 'c'
>>> arr2
<xarray.DataArray (x: 3, y: 2)>
array([[0.612611, 0.125753],
[0.853181, 0.948818],
[0.180885, 0.33363 ]])
Coordinates:
* x (x) <U1 'a' 'b' 'c'
* y (y) <U1 'a' 'b'
>>> arr1.broadcast_like(arr2)
<xarray.DataArray (x: 3, y: 3)>
array([[0.840235, 0.215216, 0.77917 ],
[0.726351, 0.543824, 0.875115],
[ nan, nan, nan]])
Coordinates:
* x (x) object 'a' 'b' 'c'
* y (y) object 'a' 'b' 'c'
"""
if exclude is None:
exclude = set()
args = align(other, self, join='outer', copy=False, exclude=exclude)

dims_map, common_coords = _get_broadcast_dims_map_common_coords(
args, exclude)

return _broadcast_helper(self, exclude, dims_map, common_coords)
return _broadcast_helper(args[1], exclude, dims_map, common_coords)

def reindex_like(self, other: Union['DataArray', Dataset],
method: Optional[str] = None, tolerance=None,
Expand Down
2 changes: 1 addition & 1 deletion xarray/core/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -2039,7 +2039,7 @@ def broadcast_like(self,
dims_map, common_coords = _get_broadcast_dims_map_common_coords(
args, exclude)

return _broadcast_helper(self, exclude, dims_map, common_coords)
return _broadcast_helper(args[1], exclude, dims_map, common_coords)

def reindex_like(self, other, method=None, tolerance=None, copy=True,
fill_value=dtypes.NA):
Expand Down
30 changes: 17 additions & 13 deletions xarray/tests/test_dataarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -1256,19 +1256,23 @@ def test_coords_non_string(self):
assert_identical(actual, expected)

def test_broadcast_like(self):
original1 = DataArray(np.random.randn(5),
[('x', range(5))])

original2 = DataArray(np.random.randn(6),
[('y', range(6))])

expected1, expected2 = broadcast(original1, original2)

assert_identical(original1.broadcast_like(original2),
expected1.transpose('y', 'x'))

assert_identical(original2.broadcast_like(original1),
expected2)
arr1 = DataArray(np.ones((2, 3)), dims=['x', 'y'],
coords={'x': ['a', 'b'], 'y': ['a', 'b', 'c']})
arr2 = DataArray(np.ones((3, 2)), dims=['x', 'y'],
coords={'x': ['a', 'b', 'c'], 'y': ['a', 'b']})
orig1, orig2 = broadcast(arr1, arr2)
new1 = arr1.broadcast_like(arr2)
new2 = arr2.broadcast_like(arr1)

assert orig1.identical(new1)
assert orig2.identical(new2)

orig3 = DataArray(np.random.randn(5), [('x', range(5))])
orig4 = DataArray(np.random.randn(6), [('y', range(6))])
new3, new4 = broadcast(orig3, orig4)

assert_identical(orig3.broadcast_like(orig4), new3.transpose('y', 'x'))
assert_identical(orig4.broadcast_like(orig3), new4)

def test_reindex_like(self):
foo = DataArray(np.random.randn(5, 6),
Expand Down

0 comments on commit 8da3f67

Please sign in to comment.