Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Additions to ruff rules #386

Merged
merged 17 commits into from
Jul 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions benchmarks/benchmark_model.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
import numpy as np

import pybop

from .benchmark_utils import set_random_seed
from benchmarks.benchmark_utils import set_random_seed


class BenchmarkModel:
Expand Down
3 changes: 1 addition & 2 deletions benchmarks/benchmark_optim_construction.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
import numpy as np

import pybop

from .benchmark_utils import set_random_seed
from benchmarks.benchmark_utils import set_random_seed


class BenchmarkOptimisationConstruction:
Expand Down
3 changes: 1 addition & 2 deletions benchmarks/benchmark_parameterisation.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
import numpy as np

import pybop

from .benchmark_utils import set_random_seed
from benchmarks.benchmark_utils import set_random_seed


class BenchmarkParameterisation:
Expand Down
3 changes: 1 addition & 2 deletions benchmarks/benchmark_track_parameterisation.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
import numpy as np

import pybop

from .benchmark_utils import set_random_seed
from benchmarks.benchmark_utils import set_random_seed


class BenchmarkTrackParameterisation:
Expand Down
6 changes: 3 additions & 3 deletions docs/_extension/gallery_directive.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
"""

from pathlib import Path
from typing import Any, Dict, List
from typing import Any

from docutils import nodes
from docutils.parsers.rst import directives
Expand Down Expand Up @@ -68,7 +68,7 @@ class GalleryGridDirective(SphinxDirective):
"class-card": directives.unchanged,
}

def run(self) -> List[nodes.Node]:
def run(self) -> list[nodes.Node]:
"""Create the gallery grid."""
if self.arguments:
# If an argument is given, assume it's a path to a YAML file
Expand Down Expand Up @@ -129,7 +129,7 @@ def run(self) -> List[nodes.Node]:
return [container.children[0]]


def setup(app: Sphinx) -> Dict[str, Any]:
def setup(app: Sphinx) -> dict[str, Any]:
"""Add custom configuration to sphinx app.

Args:
Expand Down
4 changes: 2 additions & 2 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,11 +7,11 @@
from pathlib import Path

sys.path.append(str(Path(".").resolve()))
from pybop._version import __version__ # noqa: E402
from pybop._version import __version__

# -- Project information -----------------------------------------------------
project = "PyBOP"
copyright = "2023, The PyBOP Team"
copyright = "2023, The PyBOP Team" # noqa A001
author = "The PyBOP Team"
release = f"v{__version__}"

Expand Down
2 changes: 1 addition & 1 deletion examples/standalone/problem.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ def __init__(
self._dataset = dataset.data

# Check that the dataset contains time and current
for name in ["Time [s]"] + self.signal:
for name in ["Time [s]", *self.signal]:
if name not in self._dataset:
raise ValueError(f"expected {name} in list of dataset")

Expand Down
28 changes: 5 additions & 23 deletions pybop/_dataset.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
import numpy as np
from pybamm import Interpolant, solvers
from pybamm import t as pybamm_t
from pybamm import solvers


class Dataset:
Expand Down Expand Up @@ -77,26 +76,7 @@ def __getitem__(self, key):

return self.data[key]

def Interpolant(self):
"""
Create an interpolation function of the dataset based on the independent variable.

Currently, only time-based interpolation is supported. This method modifies
the instance's Interpolant attribute to be an interpolation function that
can be evaluated at different points in time.

Raises
------
NotImplementedError
If the independent variable for interpolation is not supported.
"""

if self.variable == "time":
self.Interpolant = Interpolant(self.x, self.y, pybamm_t)
else:
NotImplementedError("Only time interpolation is supported")

def check(self, signal=["Voltage [V]"]):
def check(self, signal=None):
"""
Check the consistency of a PyBOP Dataset against the expected format.

Expand All @@ -110,11 +90,13 @@ def check(self, signal=["Voltage [V]"]):
ValueError
If the time series and the data series are not consistent.
"""
if signal is None:
signal = ["Voltage [V]"]
if isinstance(signal, str):
signal = [signal]

# Check that the dataset contains time and chosen signal
for name in ["Time [s]"] + signal:
for name in ["Time [s]", *signal]:
if name not in self.names:
raise ValueError(f"expected {name} in list of dataset")

Expand Down
26 changes: 13 additions & 13 deletions pybop/costs/_likelihoods.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import List, Tuple, Union
from typing import Union

import numpy as np

Expand All @@ -14,7 +14,7 @@ class BaseLikelihood(BaseCost):
"""

def __init__(self, problem: BaseProblem):
super(BaseLikelihood, self).__init__(problem)
super().__init__(problem)
self.n_time_data = problem.n_time_data


Expand All @@ -32,8 +32,8 @@ class GaussianLogLikelihoodKnownSigma(BaseLikelihood):
per dimension.
"""

def __init__(self, problem: BaseProblem, sigma0: Union[List[float], float]):
super(GaussianLogLikelihoodKnownSigma, self).__init__(problem)
def __init__(self, problem: BaseProblem, sigma0: Union[list[float], float]):
super().__init__(problem)
sigma0 = self.check_sigma0(sigma0)
self.sigma2 = sigma0**2.0
self._offset = -0.5 * self.n_time_data * np.log(2 * np.pi * self.sigma2)
Expand Down Expand Up @@ -62,7 +62,7 @@ def _evaluate(self, inputs: Inputs, grad: Union[None, np.ndarray] = None) -> flo

return e if self.n_outputs != 1 else e.item()

def _evaluateS1(self, inputs: Inputs) -> Tuple[float, np.ndarray]:
def _evaluateS1(self, inputs: Inputs) -> tuple[float, np.ndarray]:
"""
Calls the problem.evaluateS1 method and calculates the log-likelihood and gradient.
"""
Expand Down Expand Up @@ -90,7 +90,7 @@ def check_sigma0(self, sigma0: Union[np.ndarray, float]):
if np.shape(sigma0) not in [(), (1,), (self.n_outputs,)]:
raise ValueError(
"sigma0 must be either a scalar value (one standard deviation for "
+ "all coordinates) or an array with one entry per dimension."
"all coordinates) or an array with one entry per dimension."
)
return sigma0

Expand All @@ -115,10 +115,10 @@ class GaussianLogLikelihood(BaseLikelihood):
def __init__(
self,
problem: BaseProblem,
sigma0: Union[float, List[float], List[Parameter]] = 0.002,
sigma0: Union[float, list[float], list[Parameter]] = 0.002,
dsigma_scale: float = 1.0,
):
super(GaussianLogLikelihood, self).__init__(problem)
super().__init__(problem)
self._dsigma_scale = dsigma_scale
self._logpi = -0.5 * self.n_time_data * np.log(2 * np.pi)

Expand All @@ -128,7 +128,7 @@ def __init__(
self._dl = np.ones(self.n_parameters)

def _add_sigma_parameters(self, sigma0):
sigma0 = [sigma0] if not isinstance(sigma0, List) else sigma0
sigma0 = [sigma0] if not isinstance(sigma0, list) else sigma0
sigma0 = self._pad_sigma0(sigma0)

for i, value in enumerate(sigma0):
Expand Down Expand Up @@ -214,7 +214,7 @@ def _evaluate(self, inputs: Inputs, grad: Union[None, np.ndarray] = None) -> flo

return e if self.n_outputs != 1 else e.item()

def _evaluateS1(self, inputs: Inputs) -> Tuple[float, np.ndarray]:
def _evaluateS1(self, inputs: Inputs) -> tuple[float, np.ndarray]:
"""
Calls the problem.evaluateS1 method and calculates the log-likelihood.

Expand Down Expand Up @@ -265,7 +265,7 @@ class MAP(BaseLikelihood):
"""

def __init__(self, problem, likelihood, sigma0=None, gradient_step=1e-3):
super(MAP, self).__init__(problem)
super().__init__(problem)
self.sigma0 = sigma0
self.gradient_step = gradient_step
if self.sigma0 is None:
Expand All @@ -278,7 +278,7 @@ def __init__(self, problem, likelihood, sigma0=None, gradient_step=1e-3):
except Exception as e:
raise ValueError(
f"An error occurred when constructing the Likelihood class: {e}"
)
) from e

if hasattr(self, "likelihood") and not isinstance(
self.likelihood, BaseLikelihood
Expand Down Expand Up @@ -310,7 +310,7 @@ def _evaluate(self, inputs: Inputs, grad=None) -> float:
posterior = log_likelihood + log_prior
return posterior

def _evaluateS1(self, inputs: Inputs) -> Tuple[float, np.ndarray]:
def _evaluateS1(self, inputs: Inputs) -> tuple[float, np.ndarray]:
"""
Compute the maximum a posteriori with respect to the parameters.
The method passes the likelihood gradient to the optimiser without modification.
Expand Down
4 changes: 2 additions & 2 deletions pybop/costs/base_cost.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def evaluate(self, x, grad=None):
raise e

except Exception as e:
raise ValueError(f"Error in cost calculation: {e}")
raise ValueError(f"Error in cost calculation: {e}") from e

def _evaluate(self, inputs: Inputs, grad=None):
"""
Expand Down Expand Up @@ -129,7 +129,7 @@ def evaluateS1(self, x):
raise e

except Exception as e:
raise ValueError(f"Error in cost calculation: {e}")
raise ValueError(f"Error in cost calculation: {e}") from e

def _evaluateS1(self, inputs: Inputs):
"""
Expand Down
8 changes: 4 additions & 4 deletions pybop/costs/design_costs.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def __init__(self, problem, update_capacity=False):
problem : object
The problem instance containing the model and data.
"""
super(DesignCost, self).__init__(problem)
super().__init__(problem)
self.problem = problem
if update_capacity is True:
nominal_capacity_warning = (
Expand All @@ -41,7 +41,7 @@ def __init__(self, problem, update_capacity=False):
nominal_capacity_warning = (
"The nominal capacity is fixed at the initial model value."
)
warnings.warn(nominal_capacity_warning, UserWarning)
warnings.warn(nominal_capacity_warning, UserWarning, stacklevel=2)
self.update_capacity = update_capacity
self.parameter_set = problem.model.parameter_set
self.update_simulation_data(self.parameters.as_dict("initial"))
Expand Down Expand Up @@ -97,7 +97,7 @@ class GravimetricEnergyDensity(DesignCost):
"""

def __init__(self, problem, update_capacity=False):
super(GravimetricEnergyDensity, self).__init__(problem, update_capacity)
super().__init__(problem, update_capacity)

def _evaluate(self, inputs: Inputs, grad=None):
"""
Expand Down Expand Up @@ -153,7 +153,7 @@ class VolumetricEnergyDensity(DesignCost):
"""

def __init__(self, problem, update_capacity=False):
super(VolumetricEnergyDensity, self).__init__(problem, update_capacity)
super().__init__(problem, update_capacity)

def _evaluate(self, inputs: Inputs, grad=None):
"""
Expand Down
6 changes: 3 additions & 3 deletions pybop/costs/fitting_costs.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ class RootMeanSquaredError(BaseCost):
"""

def __init__(self, problem):
super(RootMeanSquaredError, self).__init__(problem)
super().__init__(problem)

# Default fail gradient
self._de = 1.0
Expand Down Expand Up @@ -131,7 +131,7 @@ class SumSquaredError(BaseCost):
"""

def __init__(self, problem):
super(SumSquaredError, self).__init__(problem)
super().__init__(problem)

# Default fail gradient
self._de = 1.0
Expand Down Expand Up @@ -161,7 +161,7 @@ def _evaluate(self, inputs: Inputs, grad=None):

e = np.asarray(
[
np.sum(((prediction[signal] - self._target[signal]) ** 2))
np.sum((prediction[signal] - self._target[signal]) ** 2)
for signal in self.signal
]
)
Expand Down
Loading
Loading