-
Notifications
You must be signed in to change notification settings - Fork 26
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add a WeightedCost * Fix setting * Add tests * Update base_cost.py * Update CHANGELOG.md * Update imports * Update x0 to [0.5] * Update spm_weighted_cost.py * Update TypeError with test * Update spm_weighted_cost.py * Update evaluate and _evaluate * Pass current_sensitivities to MAP * Add test_weighted_design_cost * Add evaluate back into GaussianLogLikelihood * Update to super() * Update prediction to self._current_prediction * Update y to self._current_prediction * Update cost_list to args * Add descriptions * refactor: move WeightedCost into separate file --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Brady Planden <[email protected]> Co-authored-by: Brady Planden <[email protected]>
- Loading branch information
1 parent
e34099f
commit f3a32bc
Showing
9 changed files
with
413 additions
and
67 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
import numpy as np | ||
|
||
import pybop | ||
|
||
# Parameter set and model definition | ||
parameter_set = pybop.ParameterSet.pybamm("Chen2020") | ||
model = pybop.lithium_ion.SPM(parameter_set=parameter_set) | ||
|
||
# Fitting parameters | ||
parameters = pybop.Parameters( | ||
pybop.Parameter( | ||
"Negative electrode active material volume fraction", | ||
prior=pybop.Gaussian(0.68, 0.05), | ||
bounds=[0.5, 0.8], | ||
true_value=parameter_set["Negative electrode active material volume fraction"], | ||
), | ||
pybop.Parameter( | ||
"Positive electrode active material volume fraction", | ||
prior=pybop.Gaussian(0.58, 0.05), | ||
bounds=[0.4, 0.7], | ||
true_value=parameter_set["Positive electrode active material volume fraction"], | ||
), | ||
) | ||
|
||
# Generate data | ||
sigma = 0.001 | ||
t_eval = np.arange(0, 900, 3) | ||
values = model.predict(t_eval=t_eval) | ||
corrupt_values = values["Voltage [V]"].data + np.random.normal(0, sigma, len(t_eval)) | ||
|
||
# Form dataset | ||
dataset = pybop.Dataset( | ||
{ | ||
"Time [s]": t_eval, | ||
"Current function [A]": values["Current [A]"].data, | ||
"Voltage [V]": corrupt_values, | ||
} | ||
) | ||
|
||
# Generate problem, cost function, and optimisation class | ||
problem = pybop.FittingProblem(model, parameters, dataset) | ||
cost1 = pybop.SumSquaredError(problem) | ||
cost2 = pybop.RootMeanSquaredError(problem) | ||
weighted_cost = pybop.WeightedCost(cost1, cost2, weights=[1, 100]) | ||
|
||
for cost in [weighted_cost, cost1, cost2]: | ||
optim = pybop.IRPropMin(cost, max_iterations=60) | ||
|
||
# Run the optimisation | ||
x, final_cost = optim.run() | ||
print("True parameters:", parameters.true_value()) | ||
print("Estimated parameters:", x) | ||
|
||
# Plot the timeseries output | ||
pybop.quick_plot(problem, problem_inputs=x, title="Optimised Comparison") | ||
|
||
# Plot convergence | ||
pybop.plot_convergence(optim) | ||
|
||
# Plot the cost landscape with optimisation path | ||
pybop.plot2d(optim, steps=15) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
from typing import Optional | ||
|
||
import numpy as np | ||
|
||
from pybop import BaseCost | ||
from pybop.parameters.parameter import Inputs | ||
|
||
|
||
class WeightedCost(BaseCost): | ||
""" | ||
A subclass for constructing a linear combination of cost functions as | ||
a single weighted cost function. | ||
Inherits all parameters and attributes from ``BaseCost``. | ||
Additional Attributes | ||
--------------------- | ||
costs : list[pybop.BaseCost] | ||
A list of PyBOP cost objects. | ||
weights : list[float] | ||
A list of values with which to weight the cost values. | ||
_different_problems : bool | ||
If True, the problem for each cost is evaluated independently during | ||
each evaluation of the cost (default: False). | ||
""" | ||
|
||
def __init__(self, *args, weights: Optional[list[float]] = None): | ||
self.costs = [] | ||
for cost in args: | ||
if not isinstance(cost, BaseCost): | ||
raise TypeError(f"Received {type(cost)} instead of cost object.") | ||
self.costs.append(cost) | ||
self.weights = weights | ||
self._different_problems = False | ||
|
||
if self.weights is None: | ||
self.weights = np.ones(len(self.costs)) | ||
elif isinstance(self.weights, list): | ||
self.weights = np.array(self.weights) | ||
if not isinstance(self.weights, np.ndarray): | ||
raise TypeError( | ||
"Expected a list or array of weights the same length as costs." | ||
) | ||
if not len(self.weights) == len(self.costs): | ||
raise ValueError( | ||
"Expected a list or array of weights the same length as costs." | ||
) | ||
|
||
# Check if all costs depend on the same problem | ||
for cost in self.costs: | ||
if hasattr(cost, "problem") and cost.problem is not self.costs[0].problem: | ||
self._different_problems = True | ||
|
||
if not self._different_problems: | ||
super().__init__(self.costs[0].problem) | ||
self._fixed_problem = self.costs[0]._fixed_problem | ||
else: | ||
super().__init__() | ||
self._fixed_problem = False | ||
for cost in self.costs: | ||
self.parameters.join(cost.parameters) | ||
|
||
def _evaluate(self, inputs: Inputs, grad=None): | ||
""" | ||
Calculate the weighted cost for a given set of parameters. | ||
Parameters | ||
---------- | ||
inputs : Inputs | ||
The parameters for which to compute the cost. | ||
grad : array-like, optional | ||
An array to store the gradient of the cost function with respect | ||
to the parameters. | ||
Returns | ||
------- | ||
float | ||
The weighted cost value. | ||
""" | ||
e = np.empty_like(self.costs) | ||
|
||
if not self._fixed_problem and self._different_problems: | ||
self.parameters.update(values=list(inputs.values())) | ||
elif not self._fixed_problem: | ||
self._current_prediction = self.problem.evaluate(inputs) | ||
|
||
for i, cost in enumerate(self.costs): | ||
if not self._fixed_problem and self._different_problems: | ||
inputs = cost.parameters.as_dict() | ||
cost._current_prediction = cost.problem.evaluate(inputs) | ||
else: | ||
cost._current_prediction = self._current_prediction | ||
e[i] = cost._evaluate(inputs, grad) | ||
|
||
return np.dot(e, self.weights) | ||
|
||
def _evaluateS1(self, inputs: Inputs): | ||
""" | ||
Compute the weighted cost and its gradient with respect to the parameters. | ||
Parameters | ||
---------- | ||
inputs : Inputs | ||
The parameters for which to compute the cost and gradient. | ||
Returns | ||
------- | ||
tuple | ||
A tuple containing the cost and the gradient. The cost is a float, | ||
and the gradient is an array-like of the same length as `x`. | ||
""" | ||
e = np.empty_like(self.costs) | ||
de = np.empty((len(self.parameters), len(self.costs))) | ||
|
||
if not self._fixed_problem and self._different_problems: | ||
self.parameters.update(values=list(inputs.values())) | ||
elif not self._fixed_problem: | ||
self._current_prediction, self._current_sensitivities = ( | ||
self.problem.evaluateS1(inputs) | ||
) | ||
|
||
for i, cost in enumerate(self.costs): | ||
if not self._fixed_problem and self._different_problems: | ||
inputs = cost.parameters.as_dict() | ||
cost._current_prediction, cost._current_sensitivities = ( | ||
cost.problem.evaluateS1(inputs) | ||
) | ||
else: | ||
cost._current_prediction, cost._current_sensitivities = ( | ||
self._current_prediction, | ||
self._current_sensitivities, | ||
) | ||
e[i], de[:, i] = cost._evaluateS1(inputs) | ||
|
||
e = np.dot(e, self.weights) | ||
de = np.dot(de, self.weights) | ||
|
||
return e, de |
Oops, something went wrong.