Skip to content

Commit

Permalink
Add functional parameter example (#442)
Browse files Browse the repository at this point in the history
* Create functional_parameters.py

* Define parameter set first

* Update CHANGELOG.md

* Apply suggestions from code review
Co-authored-by: Brady Planden <[email protected]>
  • Loading branch information
NicolaCourtier authored Aug 22, 2024
1 parent d414460 commit 1a76470
Show file tree
Hide file tree
Showing 2 changed files with 98 additions and 0 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

## Features

- [#441](https://github.com/pybop-team/PyBOP/issues/441) - Adds an example for estimating constants within a `pybamm.FunctionalParameter`.
- [#405](https://github.com/pybop-team/PyBOP/pull/405) - Adds frequency-domain based EIS prediction methods via `model.simulateEIS` and updates to `problem.evaluate` with examples and tests.
- [#460](https://github.com/pybop-team/PyBOP/pull/460) - Notebook example files added for ECM and folder structure updated.
- [#450](https://github.com/pybop-team/PyBOP/pull/450) - Adds support for IDAKLU with output variables, and corresponding examples, tests.
Expand Down
97 changes: 97 additions & 0 deletions examples/scripts/functional_parameters.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
import numpy as np
import pybamm

import pybop

# This example demonstrates how to use a pybamm.FunctionalParameter to
# optimise functional parameters using PyBOP.

# Method: Define a new scalar parameter for use in a functional parameter
# that already exists in the model, for example an exchange current density.


# Load parameter set
parameter_set = pybop.ParameterSet.pybamm("Chen2020")


# Define a new function using pybamm parameters
def positive_electrode_exchange_current_density(c_e, c_s_surf, c_s_max, T):
# New parameters
j0_ref = pybamm.Parameter(
"Positive electrode reference exchange-current density [A.m-2]"
)
alpha = pybamm.Parameter("Positive electrode charge transfer coefficient")

# Existing parameters
c_e_init = pybamm.Parameter("Initial concentration in electrolyte [mol.m-3]")

return (
j0_ref
* ((c_e / c_e_init) * (c_s_surf / c_s_max) * (1 - c_s_surf / c_s_max)) ** alpha
)


# Give default values to the new scalar parameters and pass the new function
parameter_set.update(
{
"Positive electrode reference exchange-current density [A.m-2]": 1,
"Positive electrode charge transfer coefficient": 0.5,
},
check_already_exists=False,
)
parameter_set["Positive electrode exchange-current density [A.m-2]"] = (
positive_electrode_exchange_current_density
)

# Model definition
model = pybop.lithium_ion.SPM(
parameter_set=parameter_set, options={"contact resistance": "true"}
)

# Fitting parameters
parameters = pybop.Parameters(
pybop.Parameter(
"Positive electrode reference exchange-current density [A.m-2]",
prior=pybop.Gaussian(1, 0.1),
),
pybop.Parameter(
"Positive electrode charge transfer coefficient",
prior=pybop.Gaussian(0.5, 0.1),
),
)

# Generate data
sigma = 0.001
t_eval = np.arange(0, 900, 3)
values = model.predict(t_eval=t_eval)
corrupt_values = values["Voltage [V]"].data + np.random.normal(0, sigma, len(t_eval))

# Form dataset
dataset = pybop.Dataset(
{
"Time [s]": t_eval,
"Current function [A]": values["Current [A]"].data,
"Voltage [V]": corrupt_values,
}
)

# Generate problem, cost function, and optimisation class
problem = pybop.FittingProblem(model, parameters, dataset)
cost = pybop.RootMeanSquaredError(problem)
optim = pybop.SciPyMinimize(cost, max_iterations=125)

# Run optimisation
x, final_cost = optim.run()
print("Estimated parameters:", x)

# Plot the timeseries output
pybop.quick_plot(problem, problem_inputs=x, title="Optimised Comparison")

# Plot convergence
pybop.plot_convergence(optim)

# Plot the parameter traces
pybop.plot_parameters(optim)

# Plot the cost landscape with optimisation path
pybop.plot2d(optim, steps=15)

0 comments on commit 1a76470

Please sign in to comment.