Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Modifies QuickPlot.plot to take a list of times and show superimposed plots in case of 1D variables. #4529

Merged
merged 15 commits into from
Nov 22, 2024
Merged
214 changes: 97 additions & 117 deletions src/pybamm/plotting/quick_plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -313,11 +313,11 @@ def set_output_variables(self, output_variables, solutions):
first_variable = first_solution[0]
domain = first_variable.domain
# check all other solutions against the first solution
for idx, variable in enumerate(first_solution):
for _idx, variable in enumerate(first_solution):
medha-14 marked this conversation as resolved.
Show resolved Hide resolved
if variable.domain != domain:
raise ValueError(
"Mismatching variable domains. "
f"'{variable_tuple[0]}' has domain '{domain}', but '{variable_tuple[idx]}' has domain '{variable.domain}'"
f"'{variable_tuple[0]}' has domain '{domain}', but '{variable_tuple[_idx]}' has domain '{variable.domain}'"
)
self.spatial_variable_dict[variable_tuple] = {}

Expand Down Expand Up @@ -484,19 +484,19 @@ def plot(self, t, dynamic=False):

Parameters
----------
t : float
Dimensional time (in 'time_units') at which to plot.
t : float or list
kratman marked this conversation as resolved.
Show resolved Hide resolved
Dimensional time (in 'time_units') at which to plot. Can be a single time or a list of times.
dynamic : bool, optional
Determine whether to allocate space for a slider at the bottom of the plot when generating a dynamic plot.
If True, creates a dynamic plot with a slider.
"""

plt = import_optional_dependency("matplotlib.pyplot")
gridspec = import_optional_dependency("matplotlib.gridspec")
cm = import_optional_dependency("matplotlib", "cm")
colors = import_optional_dependency("matplotlib", "colors")

t_in_seconds = t * self.time_scaling_factor
if isinstance(t, float):
t = [t]

self.fig = plt.figure(figsize=self.figsize)

self.gridspec = gridspec.GridSpec(self.n_rows, self.n_cols)
Expand All @@ -508,6 +508,11 @@ def plot(self, t, dynamic=False):
# initialize empty handles, to be created only if the appropriate plots are made
solution_handles = []

# Generate distinct colors for each time point
time_colors = plt.cm.coolwarm(
np.linspace(0, 1, len(t))
) # Use a colormap for distinct colors

for k, (key, variable_lists) in enumerate(self.variables.items()):
ax = self.fig.add_subplot(self.gridspec[k])
self.axes.add(key, ax)
Expand All @@ -518,152 +523,127 @@ def plot(self, t, dynamic=False):
ax.xaxis.set_major_locator(plt.MaxNLocator(3))
self.plots[key] = defaultdict(dict)
variable_handles = []
# Set labels for the first subplot only (avoid repetition)

if variable_lists[0][0].dimensions == 0:
# 0D plot: plot as a function of time, indicating time t with a line
# 0D plot: plot as a function of time, indicating multiple times with lines
ax.set_xlabel(f"Time [{self.time_unit}]")
for i, variable_list in enumerate(variable_lists):
for j, variable in enumerate(variable_list):
if len(variable_list) == 1:
# single variable -> use linestyle to differentiate model
linestyle = self.linestyles[i]
else:
# multiple variables -> use linestyle to differentiate
# variables (color differentiates models)
linestyle = self.linestyles[j]
linestyle = (
self.linestyles[i]
if len(variable_list) == 1
else self.linestyles[j]
)
full_t = self.ts_seconds[i]
(self.plots[key][i][j],) = ax.plot(
full_t / self.time_scaling_factor,
variable(full_t),
color=self.colors[i],
color=self.colors[i], # Different colors for plot lines
medha-14 marked this conversation as resolved.
Show resolved Hide resolved
linestyle=linestyle,
)
variable_handles.append(self.plots[key][0][j])
solution_handles.append(self.plots[key][i][0])
y_min, y_max = ax.get_ylim()
ax.set_ylim(y_min, y_max)
(self.time_lines[key],) = ax.plot(
[
t_in_seconds / self.time_scaling_factor,
t_in_seconds / self.time_scaling_factor,
],
[y_min, y_max],
"k--",
lw=1.5,
)

# Add vertical lines for each time in the list, using different colors for each time
for _idx, t_single in enumerate(t):
t_in_seconds = t_single * self.time_scaling_factor
(self.time_lines[key],) = ax.plot(
[
t_in_seconds / self.time_scaling_factor,
t_in_seconds / self.time_scaling_factor,
],
[y_min, y_max],
"--", # Dashed lines
lw=1.5,
color=time_colors[_idx], # Different color for each time
label=f"t = {t_single:.2f} {self.time_unit}",
)
ax.legend()

elif variable_lists[0][0].dimensions == 1:
# 1D plot: plot as a function of x at time t
# Read dictionary of spatial variables
# 1D plot: plot as a function of x at different times
spatial_vars = self.spatial_variable_dict[key]
spatial_var_name = next(iter(spatial_vars.keys()))
ax.set_xlabel(
f"{spatial_var_name} [{self.spatial_unit}]",
)
for i, variable_list in enumerate(variable_lists):
for j, variable in enumerate(variable_list):
if len(variable_list) == 1:
# single variable -> use linestyle to differentiate model
linestyle = self.linestyles[i]
else:
# multiple variables -> use linestyle to differentiate
# variables (color differentiates models)
linestyle = self.linestyles[j]
(self.plots[key][i][j],) = ax.plot(
self.first_spatial_variable[key],
variable(t_in_seconds, **spatial_vars),
color=self.colors[i],
linestyle=linestyle,
zorder=10,
)
variable_handles.append(self.plots[key][0][j])
solution_handles.append(self.plots[key][i][0])
# add lines for boundaries between subdomains
for boundary in variable_lists[0][0].internal_boundaries:
boundary_scaled = boundary * self.spatial_factor
ax.axvline(boundary_scaled, color="0.5", lw=1, zorder=0)
ax.set_xlabel(f"{spatial_var_name} [{self.spatial_unit}]")

for _idx, t_single in enumerate(t):
t_in_seconds = t_single * self.time_scaling_factor

for i, variable_list in enumerate(variable_lists):
for j, variable in enumerate(variable_list):
linestyle = (
self.linestyles[i]
if len(variable_list) == 1
else self.linestyles[j]
)
(self.plots[key][i][j],) = ax.plot(
self.first_spatial_variable[key],
variable(t_in_seconds, **spatial_vars),
color=time_colors[
_idx
], # Different color for each time
linestyle=linestyle,
label=f"t = {t_single:.2f} {self.time_unit}", # Add time label
zorder=10,
)
variable_handles.append(self.plots[key][0][j])
solution_handles.append(self.plots[key][i][0])

# Add a legend to indicate which plot corresponds to which time
ax.legend()

elif variable_lists[0][0].dimensions == 2:
# Read dictionary of spatial variables
# 2D plot: superimpose plots at different times
spatial_vars = self.spatial_variable_dict[key]
# there can only be one entry in the variable list
variable = variable_lists[0][0]
# different order based on whether the domains are x-r, x-z or y-z, etc
if self.x_first_and_y_second[key] is False:
x_name = list(spatial_vars.keys())[1][0]
y_name = next(iter(spatial_vars.keys()))[0]
x = self.second_spatial_variable[key]
y = self.first_spatial_variable[key]
var = variable(t_in_seconds, **spatial_vars)
else:
x_name = next(iter(spatial_vars.keys()))[0]
y_name = list(spatial_vars.keys())[1][0]

for _idx, t_single in enumerate(t):
kratman marked this conversation as resolved.
Show resolved Hide resolved
t_in_seconds = t_single * self.time_scaling_factor
x = self.first_spatial_variable[key]
y = self.second_spatial_variable[key]
var = variable(t_in_seconds, **spatial_vars).T
ax.set_xlabel(f"{x_name} [{self.spatial_unit}]")
ax.set_ylabel(f"{y_name} [{self.spatial_unit}]")
vmin, vmax = self.variable_limits[key]
# store the plot and the var data (for testing) as cant access
# z data from QuadMesh or QuadContourSet object
if self.is_y_z[key] is True:
self.plots[key][0][0] = ax.pcolormesh(
x,
y,
var,
vmin=vmin,
vmax=vmax,
shading=self.shading,

ax.set_xlabel(
f"{next(iter(spatial_vars.keys()))[0]} [{self.spatial_unit}]"
)
else:
self.plots[key][0][0] = ax.contourf(
x, y, var, levels=100, vmin=vmin, vmax=vmax
ax.set_ylabel(
f"{list(spatial_vars.keys())[1][0]} [{self.spatial_unit}]"
)
self.plots[key][0][1] = var
if vmin is None and vmax is None:
vmin = ax_min(var)
vmax = ax_max(var)
self.colorbars[key] = self.fig.colorbar(
cm.ScalarMappable(colors.Normalize(vmin=vmin, vmax=vmax)),
ax=ax,
)
# Set either y label or legend entries
if len(key) == 1:
title = split_long_string(key[0])
ax.set_title(title, fontsize="medium")
else:
ax.legend(
variable_handles,
[split_long_string(s, 6) for s in key],
bbox_to_anchor=(0.5, 1),
loc="lower center",
)
vmin, vmax = self.variable_limits[key]

# Use contourf and colorbars to represent the values
contour_plot = ax.contourf(
x, y, var, levels=100, vmin=vmin, vmax=vmax, cmap="coolwarm"
)
self.plots[key][0][0] = contour_plot
self.colorbars[key] = self.fig.colorbar(contour_plot, ax=ax)

# Add time to the colorbar title or axis title to indicate which time it represents
ax.set_title(f"t = {t_single:.2f} {self.time_unit}")

# Set global legend
# Set global legend if there are multiple models
if len(self.labels) > 1:
fig_legend = self.fig.legend(
solution_handles, self.labels, loc="lower right"
)
# Get the position of the top of the legend in relative figure units
# There may be a better way ...
try:
legend_top_inches = fig_legend.get_window_extent(
renderer=self.fig.canvas.get_renderer()
).get_points()[1, 1]
fig_height_inches = (self.fig.get_size_inches() * self.fig.dpi)[1]
legend_top = legend_top_inches / fig_height_inches
except AttributeError: # pragma: no cover
# When testing the examples we set the matplotlib backend to "Template"
# which means that the above code doesn't work. Since this is just for
# that particular test we can just skip it
legend_top = 0
else:
legend_top = 0
fig_legend = None

# Fix layout
# Fix layout for sliders if dynamic
if dynamic:
slider_top = 0.05
else:
slider_top = 0
bottom = max(legend_top, slider_top)
bottom = max(
fig_legend.get_window_extent(
renderer=self.fig.canvas.get_renderer()
).get_points()[1, 1]
if fig_legend
else 0,
slider_top,
)
self.gridspec.tight_layout(self.fig, rect=[0, bottom, 1, 1])

def dynamic_plot(self, show_plot=True, step=None):
Expand Down
Loading
Loading