-
-
Notifications
You must be signed in to change notification settings - Fork 563
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Issue 997 curr coll #1007
Issue 997 curr coll #1007
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks great, thanks! I haven't checked the model equations in fine detail but given that the results look good I assume it's fine.
I got a bit confused by what EffectiveResistance
did (for a while I thought it was a 0D model). I think it would be easier to understand if that model took an option dimensionality
which specifies 1D behaviour vs 2D behaviour, instead of subclassing. This is more consistent with how we have been reformatting the submodels
pybamm/models/base_model.py
Outdated
@@ -96,9 +96,9 @@ class BaseModel(object): | |||
|
|||
""" | |||
|
|||
def __init__(self, name="Unnamed model"): | |||
def __init__(self, options=None, name="Unnamed model"): | |||
self.options = options or {} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
why does the base model now take options?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I wanted to make it so you could use base model in simulations (simulation does new copy with options), but I see now what I have done isn't quite right
@@ -92,8 +92,7 @@ class BaseBatteryModel(pybamm.BaseModel): | |||
""" | |||
|
|||
def __init__(self, options=None, name="Unnamed battery model"): | |||
super().__init__(name) | |||
self.options = options | |||
super().__init__(options, name) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I'm surprised this works as I thought self.options=options
called the options setter method?
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We then set up the times a points in space to use in the plots " |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
typo: as points in space
"outputs": [ | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAHbCAYAAAADNu+6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXwUVfb2n1PdSdhCICGENQmbLEGYAQRFRxRHBQUVHcRlXGAEHWTcd3+OOi7jAipuiAo4+jq4jAgMygjuIoIsCkJYRAh7QtgDIUl31Xn/qKru6urq7urQWTnfj5HuW+eee2rp7vvUufcWMTMEQRAEQRAEQRDqE0pNByAIgiAIgiAIgpBoROgIgiAIgiAIglDvEKEjCIIgCIIgCEK9Q4SOIAiCIAiCIAj1DhE6giAIgiAIgiDUO0ToCIIgCIIgCIJQ7/DWdACCIAiCIFQ9K1asaOn1et8E0BNyo1MQhPqBBmCN3++/oW/fvnvsG+uE0CGihgD+B2AwM6sO25MBfG5s91d3fIIgCILgFstv2j8A3M7MwxxsPgcwkpkPJKpdr9f7ZqtWrbpnZmYeUBRFHqInCEKdR9M0Ki4u7lFYWPgmgIvs2+vKHZ0xAGY5iRwAYOYKAF8AGFWtUQknLETUnIhyieh6Impe0/FYIaL+RPQDEX1LRDOJKKmmYxIEIYQxAGYBcPxNM3gHwPgEt9szMzPzsIgcQRDqC4qicGZm5iHomerw7dUcT2W5GsAcImpCRF8Q0Uoi+oWILrbYzDbsBKE66AvgbwCGA/hTDcdiZzv07OaZAAoAXBzdXBCEauZqAHOM102J6BMi2kBErxGR+bs8F8CVCW5XEZEjCEJ9w/hec9Q0tV7oGMPSOjJzAYAyACOYuQ+AswFMIiIyTNcAOKVmohSEyBARE9FRInqiOtpj5t3MfMx4WwF9/KoZy5dEVEZEi6ojFkEQQrH9pgFAf+g3TXoA6ATgUgAwhqylEFFGTcQpCIJQH6j1QgdACwAHjdcE4EkiWg19Tk5bAFkAYAxrqyCi1BqJUjjRWAHgJQD/BfAfF/a9mflBeyERfU1EB4goxWFbGyLaUdkAiSgHwHlGjAAAZh4M4KbK+hQE4bix/qYBwI/MvNn4DZsJ4AzLtj0A2lRncIIgCPWJuiB0jgFoYLy+GkAmgL7M/DsARZZtAJACPesjCMcNEaUS0TNEtJGIyolohzG0JIWZDzBzATO/VdnJwkSUC+APABgOE+gAXAB9wnJlfDeFPsb/emb2VcaHIAhVgvU3DdA//4jwvoFhX2/Ytm2bd9iwYR3bt2/fMy8vr/ugQYM6r169OmX58uUNTj311JNyc3N75uTk9Lz77rtba5qejH7xxRcziKjv7NmzAzcy33nnnWZE1HfGjBnNAWDmzJlp3bt379G1a9cenTp1ynv22WdbmLYTJ05s0aFDh7wOHTrknXzyyd0/++yzJua2/v37d/32228bVeMhOCEZOXJkbnp6eu8uXbrkVZUfj8fTt1u3bj06d+6c17Vr1x4PP/xwlqpGmwYnVIZox3nevHmpqampv+vWrVuPbt269Rg4cOBJAHDHHXe0adiw4e937twZWAStUaNGvzdfR/peAIDVq1enDBo0qHNOTk7PHj16dL/gggs6bt++3fViarVe6BidSA8RNQCQBmAPM/uI6GwAOaadkd7fK506IYFcBmAKgGsBJAMYysw3MXN5gvxfC2AJgLcAXOew/QIAnwIAERUQ0d1EtNoYBjeNiLKIaD4RlRDR5+aiCETkBfAegEeZeUOCYhUEIQHYftMAoD8RdTDm5owCsAgAjGHZraDPs6sXaJqGiy66qPOZZ55Zsn379jVr165d99RTT+3ctWtX0ogRIzrfc889hQUFBWvWrFmTv3Tp0iZPP/10plm3S5cux2bOnJluvn/vvffSu3btegwAysvL6dZbb82ZN2/erxs2bMhfs2ZN/nnnnVcC6AJoxowZmYsXL96wZcuWtVOmTNl6/fXXd9i2bVudWHW2vjBmzJi9c+fO/TWW3bx581Ivu+yy3Mr4SUlJ0davX5+/adOmtV9++eXGhQsXpt11112SEU0wsY5zv379jqxfvz5//fr1+YsXL95oljdr1sz/+OOPZ9n9RfteKC0tpeHDh3e58cYbi7du3bomPz9/3fjx44sLCwvrj9AxWAA9nf8ugH5E9Av0TuJ6i83ZAD6pgdiEeoqRrdkC4HQAvzDzLwlu4lro1/S7AM4nosAXgLFS2pkAFlrsLwNwLoCToC+CMB/AA9CznAqAWwy7KwEMAPCQMTROViMUhNqF+ZsGAMsAvAxgHYAtAD42yvsCWFKTj0yYOnVqepcuXfI8Hk/fLl265E2dOjU9dq3IzJs3L9Xr9fI999xTbJaddtppx9atW9egX79+Ry699NLDAJCamqpNmTJl2+TJk1ubdgMGDDjy008/NS4vL6dDhw4pBQUFKXl5eaUAcPDgQcXv91NWVpYfABo2bMi9e/cuB4CJEye2+uc//7mjdevWfgA444wzSi+//PJ9kyZNank8+yLEx9ChQ49kZmYe97Xs1k/btm39b775ZsGMGTNamplBIfHEc5yvvPLKfXPnzk0vKiryWMsjfS8MGTLkyOuvv57ep0+fI1ddddUhc9uwYcNKTjnlFNejt+qK0HkFwHXMvJeZT2Pmk5l5NDN3t0zovArA1JoLUajHXAJ9Vb+EQURnQM9IfsDMKwD8Bv0aNjkTwCpmLrGUvcTMRcy8E8B3AJYy80/MXAa9c/R7AGDmd5g5g5nPMv7eT2TsgiAcN+Zv2tfMfCYzX8jMXY2MsdlbuAbAqzUV4NSpU9Mfe+yxts8999y20tLSlc8999y2xx57rO3xiJ3Vq1c37N27d6m9fO3atQ369OkTUp6Xl1deWlqq7N+/XwEAIsKZZ555eNasWU3//e9/NxsyZEhgnlNWVpZ67rnnHszOzu41fPjwDlOmTEk3h9Js2rSp4emnnx7i+5RTTildt25dw8ruh1A36NGjR4WqqrAOlxISj/04L1++vIk5dO3ee+9tZdo1adJEvfLKK/c+9dRTIVmdSN8LALBmzZqG9u+GeKkTJ5+ZVxLRV0TkifLA0NnMvNGhuiBUGiLKBDAQwK0Jdn0dgAXMvNd4/2+j7HnjfWDYmoUiy+tjDu+bQBCEWk+s3zSDNcz8RbUGZmHixImtp0yZUjB8+PASADD+Lbjjjjuyb7zxxv01EdPVV1+9/4UXXsgqKSnxvPDCC9sfffTRQMbn/fff3/rjjz/umT9/fuqLL77Y6vPPP2/60UcfFdREnLWVMWPGtF+zZk1C5yP17NmzdPr06duP10+vXr26VVRUKKWlpcqhQ4e83bp16wEATzzxxI7LLrvs8PFHWj/p379/1z//+c97b7nlln3l5eX0hz/84aTrr7++ePz48ftLSkqUc845p8vYsWP3jB079sC+ffs8Q4cO7XzzzTcXXXfddQd3797tvfjiizvddttthVddddWhbdu2ebOzs48769avX78jX3311Sanbffdd9+e3r179/j73/9eeLztuKVOCB0AYObpUbZVAHi7GsMRThyGA9jBzCsT5dB4Kvrl0Mfpmx/2FADNiKg3M6+CLnQuTVSbgiDULqL9phnb36iuWJzYvHlzg/POO++Itey88847snnz5gaR6sTi5JNPPjZ79uywByz36NGj7Lvvvgu5UZOfn5/cqFEjLT09PTAe5uyzzy696aabGjZs2FDr1atX2FzJ/v37H+vfv/+xcePG7e/cufPJAAo6d+587Pvvv2900UUXBbLjy5cvb9S9e/d6tchDXWf16tXrAX0Y04wZMzISIVLz8/OTPR4P2rZtW2PDP08ErMd51apVUW1btGihjhgxYv+zzz4bGDoa6XsBAPLy8sq+/fbb47qJW2eEjiDUEFcD+MZY/nkY9KVgj/fu1SXQn4h+MvTn3Jh8AOBaInoZQAozrzvOdgRBECpFx44dyxYsWNDEzOgAwIIFC5p07Nix0iubDh8+vOShhx6iiRMntrjrrrv2AsDSpUsb9ujRo+y5555rPXv27NRLLrmk5MiRI3TzzTdn/+1vfwu76/vYY4/taNiwYchKdYcOHVK+++67xsOGDSsxfbZp06YCAO64447CBx54oF3//v03tmrVSl28eHHD999/P2PJkiXr7b7rO4nIvNQVdu3a5R07dmzO6NGj9yhKXZmlET8//vhjYMGhlJQUtr5PTU3VrO8zMjJU6/vWrVv7re8rk82pzHF+8MEHi/r169ddVVUCIn8vHDhwwDN27Nh9zz//fKv33nsv7YorrjgEAPPnz2/SokULv9t5OiJ0BMEBIhoK4GYAgwGUQH9e05MJEDmAPkRtBjNvs7X5MoAXoU9Itg9bEwRBqDbuuuuu3X/9619zARScd955RxYsWNDkr3/9a+5DDz20s7I+FUXB3Llzfxs/fnz7yZMnt0pJSeF27dqVv/TSS9tnzZq1acKECdm33XZbkqZpGDly5L77779/j93H5ZdfHjaMSdM0PPvss1kTJkzIadCggdaoUSNt2rRpWwDg6quvPrRjx47kU089tTsRcePGjbXp06dvycnJCazQOmLEiC5er5cBoE+fPkfmz5+/ubL7KDgzfPjwDkuWLEk9cOCANysrq9d999236/bbb98bu6Z7P+Xl5Uq3bt16+P1+8ng8PGrUqH0PP/xwUSyfQnwc73Fu3bq1f+jQoQemTZuWBUT/XmjSpAnPmTNn0y233NL+3nvvbe/1erl79+7HpkyZsi1WOybEbF/CXxCEREJEZQDKAbzIzA+5sP8UwMvMnHCxQ0QLAZwKPTN1TqL9C4JQe1m1alVB7969XXcup06dmj5x4sTWmzdvbtCxY8eyu+66a3dNzc8RBEGIxqpVq1r07t07114uGR1BqGKYOd4x7V8D+KoKQgEzn1sVfgVBqH/ceOON+0XYCIJQlxGhIwi1DGZ+pqZjEARBEARBqOvU3xlagiAIgiAIgiCcsIjQEQRBEIQTA03TNKrpIARBEBKJ8b2mOW0ToSMIgiAIJwZriouL00TsCIJQX9A0jYqLi9MArHHaLnN0BEEQBOEEwO/331BYWPhmYWFhT8iNTkEQ6gcagDV+v/8Gp42yvLQgCIIgCIIgCPUOuaMjCIIgCIIgCEK9Q4SOIAiCIAiCIAj1DhE6giAIgiAIgiDUO0ToCIIgCIIgCIJQ7xChIwiCIAiCIAhCvUOETgIhoq5E9LPl7zAR3UZEI4loLRFpRNQvSv0hRLSBiDYR0X2W8g5EtNQof5+IkmsyViJqT0RfEVG+YXurZdsjRLTT4veC4431eOM16hcQ0S9G3eWW8nQiWkhEvxr/Nq/JWCPVNbYl/NhGifVZIlpPRKuJ6GMiahahfm24ZmPGWsuuWbfHttquWUEQBEGoj8jy0lUEEXkA7AQwAEAj6Ot8TwVwFzMvj2C/EcC5AHYAWAbgSmbOJ6IPAMxi5veI6DUAq5h5Sg3G2hpAa2ZeSUSpAFYAuMSI9REAR5h5YqLiO954jToFAPox815b+TMA9jPzU0ZHvTkz31uTsTrVZeatVX1sbbF2BfAlM/uJ6GkAsB+XWnTNuom1Nl2zMeM16hSgBq5ZQRAEQagvSEan6jgHwG/MvJWZ1zHzhhj2/QFsYubNzFwB4D0AFxMRARgM4D+G3b8AXFKTsTLzbmZeabwuAbAOQNsExxSNeI9tNC6GfkyBWnBsI9VNcEwx22PmBczsN8qXAGjnYF9brtmYsdaya9bNsY1GVV+zgiAIglAvEKFTdVwBYGYc9m0BbLe832GUZQA4aOkYmeWJJN5YAxBRLoDfA1hqKZ5gDMuZXkXDaioTLwNYQEQriGicpTyLmXcbrwsBZCUiQAuVPrYR6lblsY0U6xgA8x3Ka+M1GynWALXsmo0Wb01ds4IgCIJQLxChUwUY8xEuAvBhTccSi+OJlYiaAPgIwG3MfNgongKgE4DfAdgNYFKCQjXbrGy8ZzBzHwBDAdxMRGfaDVgfx5mwsZzHeWyd6lbZsY0UKxE9CMAP4N1EtXW8HE+stemadRFvtV+zgiAIglCfEKFTNQwFsJKZi+KosxNAe8v7dkbZPgDNiMhrK08UlYkVRJQEvcP4LjPPMsuZuYiZVWbWALwBfXhTIqlUvMy80/h3D4CPLXEVGfM3zHkce2o61kh1q/jYhrVHRNcDGAbganaezFdrrlkXsdaqa9ZNvDV0zQqCIAhCvUGETtVwJeIfrrQMQBdjtapk6ENd5hqdoK8A/Mmwuw7AnIRFWolYjTkY0wCsY+bnbNtaW96OALDmuCMMpTLxNjYmoIOIGgM4zxLXXOjHFKgFxzZa3So+tiHtEdEQAPcAuIiZSyPUqRXXrJtYa9M16zLemrpmBUEQBKH+wMzyl8A/AI2h39FOs5SNgD5PoRxAEYDPjPI2AD612F0AfRWr3wA8aCnvCOBHAJugD39JqclYAZwBfbjMagA/G38XGNveAfCLsW0u9JWuavTYGsdvlfG31nZsMwB8AeBXAJ8DSK8F10FY3ao8thFi3QR9/o15fl+rxddszFhr2TXrJt5qv2blT/7kT/7kT/7q258sLy0IgiAIgiAIQr3DG9tEEARBEIS6zooVK1p6vd43AfSEDF0XBKF+oAFY4/f7b+jbt2/YnFUROoIgCIJwAuD1et9s1apV98zMzAOKoshwDkEQ6jyaplFxcXGPwsLCN6GvcBqC3NERBEEQhBODnpmZmYdF5AiCUF9QFIUzMzMPQc9Uh2+v5ngEQRAEQagZFBE5giDUN4zvNUdNI0JHEARBEIQqZ9OmTUkDBgw4qVOnTnmdO3fOe+yxx1qa24qKijwDBw7skpOT03PgwIFdiouLPQCgaRquv/769tnZ2T1POumkHosWLWpUc3sguGHv3r2eIUOGdOzQoUNex44d8z7//PPGgJzj+sTIkSNz09PTe3fp0iXPWl6Zc/zSSy9l5OTk9MzJyen50ksvZSQ6VhE6tQAiGlfTMbhFYq0a6lKsQN2KV2IVhNpBUlISJk2atOO3335bu2zZsnXTpk1ruWLFigYA8PDDD7c+66yzSrZu3brmrLPOKvn73//eCgA+/PDDtM2bNzcoKChYM2XKlK3jx4/Prtm9EGIxbty49uedd97hLVu2rM3Pz8//3e9+VwbIOa5PjBkzZu/cuXN/tZfHe46Lioo8Tz/9dJsff/xx3fLly9c9/fTTbUxxlChE6NQO6lLnRmKtGupSrEDdildiFYRaQE5Oju+MM84oBYDmzZtrnTp1OrZt27ZkAPjf//7X7MYbb9wHADfeeOO++fPnNweAOXPmNLv66qv3KYqCc8455+jhw4e9W7duTbL6PXz4sHLWWWd17tq1a48uXbrkvfHGG82re98EnX379nmWLl2aetttt+0FgAYNGnCLFi1UQM5xfWLo0KFHMjMz/fbyeM/x7Nmz084888zDWVlZamZmpnrmmWcenjVrVprd7/jx49t26tQp76STTuoxbty4dvHEKquuCYIgCIJQrWzYsCE5Pz+/0aBBg44AwL59+7w5OTk+AGjfvr1v3759XgDYvXt3Um5uboVZr3Xr1hVbt25NMm0BYNasWU1btWrl+/rrrzcZvhJ6R1hwz4YNG5LT09P9I0eOzM3Pz2/Uq1evo2+88cb2pk2banKO6z/xnuOdO3cmtWvXLlDetm3bip07d4aI3MLCQs+nn37afPPmzWsURcHevXvjOvcidKLg9ZzE4FIAAAEgUMh2Mv5PYWVw2GJs49C6AJCCdKRSLofYRfATvi20NFIssd/bPTnbp6IFWlEndtoeXj9kZ53tHQop8D8OrRfmJ+g/LFYCWnjS0TElJ/S4Wk9CSFnkuEPKw8rCfUYtD6kf3NaqQVP0SGvNIdssthStnCzbIrYVXjdanMFjGl4OAG1TG6F3VgY7HZOgXaTjzDY7mwsK326t53TNhNSx1ctOT0Hf3CYcctzsfl3sg/OHI1KsDjYuPpzZrb3om9eA3dha30f58ohhx/h5ZcVnzDwEwgnFmDFj269ZsyahcyF69uxZOn36G9tj2R06dEi59NJLOz311FPb09PTNft2RVFAjh90Z/r06XPswQcfbP/Xv/617cUXX3xoyJAhR+IMvV7yxQNvt9+3cWdCz3HGSW1Lz3ny2ojn2O/307p16xpNnjx52+DBg4+OHj26/UMPPdRq8uTJu6x2co4Tg7bkpvZ8MD+h55ia9ShVTn0t5uc4FvGe40hkZGSoKSkp2qhRo3KHDRt2cNSoUYfiqS9CJwrMpWia/Dd4QPofK1CMHoJilCnGHwAojMB7azkF3gMKB+uTWQZrmeGDg/LGrEtWn2wvD9rq24ICyWpj2hGbdZ1sEWprlpNDGQDFIjTM1/q/bCtjEAU7meZ7hQCiYCc2WG6WMUgxy9lW38nWocz4M+sAACkIKbfb6n6cfZixRrMjspUrDmWBYxIsgxKhfiAuhJQhkq2CgABwiinYDkLLHWKFZV/tPmG0FVLf0TbYprXcGoc1LjMOq08Y5xa2fbDbwozHbqeYxyvYFizl+nVhCB/rNotfp7ZC7fS67Fhu+tWLONAWAh8uNn0qAJOl3PgQcoitYadQ0B4AFN3OXp+NfWIzJkVFs5QtLSAI1UR5eTldeOGFnUaOHLn/uuuuO2iWZ2Rk+M27+Fu3bk1KT0/3A0Dr1q19BQUFyabd7t27k613+gGgV69e5StXrsz/6KOP0h566KG2n3/++eGJEyfurr69Ekxyc3MrsrKyKgYPHnwUAEaNGnXgqaeeagXIOT4RiPcct23b1vfNN9+kmuU7d+5MHjRoUInVZ1JSEn7++ed1c+fObfqf//yn+ZQpU1ouWbJko9uYROgIgiAIwgmGm8xLotE0DVdccUXOSSedVPbII48UWbedf/75B6dOnZrx5JNPFk6dOjVjyJAhBwHgoosuOvjqq6+2HDt27P6vvvqqcWpqqmrvBBcUFCS1bNnSP378+P3NmzdXp02bJuIdQLTMS1WRnZ3tb9WqVcWqVatSevfuXb5gwYKmXbt2LQPkHFcFici8JJJ4z/Ell1xy6B//+EdbcwGCb775punzzz+/w+rz0KFDypEjR5RRo0Yd+uMf/3ikU6dOJ8cTkwgdQRAEQRCqnIULFzaZPXt2RpcuXY5169atBwA8+uijO0eNGnXo0Ucf3T1ixIhOOTk5Ldq2bVvx8ccf/wYAl19++aFPPvkkLScnp2fDhg21N998s8Dud8WKFQ3vv//+doqiwOv18quvvrq1mndNsPDSSy9tu/rqqztWVFRQdnZ2+cyZMwsAQM5x/WH48OEdlixZknrgwAFvVlZWr/vuu2/X7bffvjfec5yVlaXefffdu/r27dsdAO65555dWVlZqrWtgwcPeoYNG9a5vLycAOCxxx6LS9wRszw7LBIepR3L0DUZuubkw4xVhq7J0LV6MHRtBTP3g1DvWbVqVUHv3r331nQcgiAIiWbVqlUtevfunWsvl+WlBUEQBEEQBEGod4jQEQRBEARBEASh3iFCRxAEQRAEQRCEeocIHUEQBEEQBEEQ6h0idARBEARBEARBqHeI0BEEQRAEQRAEod4hQkcQBEEQhGrD7/eje/fuPc4+++zOZtn69euTe/Xq1S07O7vnhRde2LGsrIwA4NixY3ThhRd2zM7O7tmrV69uGzZsSI7sWagNPProoy07d+6c16VLl7zhw4d3KC0tJUDOsVAziNARBEEQBKHaePzxx7M6d+58zFp2xx13tJswYULRtm3b1qSlpfknT57cAgAmT57cIi0tzb9t27Y1EyZMKLrjjjva1UzUghu2bNmS9Prrr2f9/PPP+b/++utaVVXpzTffTAfkHAs1gwgdQRAEQRCqhd9++y3ps88+Sxs7dmzgwaWapuGHH35IHT169AEAGDNmzL7//ve/zQBg3rx5zcaMGbMPAEaPHn1g8eLFqZqmhfjcunVrUr9+/bp269atR5cuXfL+97//NanGXRJsqKpKR48eVXw+H44dO6a0a9fOJ+dYqClE6AiCIAiCUC3cfPPN7Z955pkdihLsfhQVFXlTU1PVpKQkAEBubm5FUVFRsrEtuUOHDhUAkJSUhCZNmqhFRUVeq8/p06enn3POOYfWr1+fv27durUDBgworb49Eqx06NDBd/PNNxd26NChV8uWLXunpqaql1566WE5x0JN4Y1tIgiCIAhCfeLZm95uvyV/V6NE+uzQo03p3a9duz3S9pkzZ6a1aNHC/4c//KF03rx5qYlq99RTTz1644035vp8PuVPf/rTgYEDBx6LXav+U/zyk+0rtm1O6DlOzu5YmjnhgYjnuLi42PPJJ58027Rp0y8ZGRnqhRde2PHVV19NHzFixOHjaVfOsVBZROhEQeOdnx0sv69FTcdRa+A4ywVBqAvsjW0iCMfPokWLmixcuLBZ27Zt08rLy5WjR48qF198cYePP/54S0lJicfn8yEpKQkFBQXJWVlZFQCQlZVVsWXLluROnTr5fD4fjhw54snKyvJb/Q4dOvTIt99+u+Gjjz5KGzNmTIcJEyYUTZgwYV/N7OWJzX//+9+m2dnZ5W3atPEDwCWXXHJw8eLFTW666ab9co6FmkCEThSYeUhNxyAIgiAIiSZa5qWqeOWVV3a+8sorOwFg3rx5qZMmTcqaM2fOFgA49dRTS2bMmNF83LhxB6ZPn54xbNiwgwBw4YUXHpw+fXrGH//4x6MzZsxoftppp5VYh70BwMaNG5M7duxYceedd+4tLy+nlStXNgJwwneCo2Veqorc3NyKlStXNikpKVEaN26sffnll6l9+/YtVRRFzrFQI4jQEQRBEAShRpk0adKOUaNGdXr88cfb5uXlld566617AeDWW2/de9lll3XIzs7umZaWpr7//vu/2et+9tlnqS+++GIrr9fLjRo1Ut99990t1b8HAgAMHjz46PDhww/06tWru9frRV5eXukdd9xRDMg5FmoGYpZxR4IgCIJQ31m1alVB7969ZaiiIAj1jlWrVrXo3bt3rr1cVl0TBEEQBEEQBKHeIUJHEARBEARBEIR6hwgdQRAEQRAEQRDqHSJ0BEEQBCIijUcAACAASURBVOHEQNM0jWo6CEEQhERifK9pTttE6AiCIAjCicGa4uLiNBE7giDUFzRNo+Li4jQAa5y2y/LSgiAIgnAC4Pf7bygsLHyzsLCwJ+RGpyAI9QMNwBq/33+D00ZZXloQBEEQBEEQhHqH3NERBEEQBEEQBKHeIUJHEARBEARBEIR6hwgdQRAEQRAEQRDqHSJ0BEEQBEEQBEGod4jQEQRBEARBEASh3iFCRxAEQRAEQRCEeocIHUEQBEEQBEEQ6h21XugQ0XQi2kNEayxlzxLReiJaTUQfE1Ezy7b7iWgTEW0govMt5UOMsk1EdF9174cgCIIgCIIgCNVHrRc6AN4CMMRWthBAT2buBWAjgPsBgIh6ALgCQJ5R51Ui8hCRB8ArAIYC6AHgSsNWEARBEARBEIR6SK0XOsz8LYD9trIFzOw33i4B0M54fTGA95i5nJm3ANgEoL/xt4mZNzNzBYD3DFtBEARBEARBEOoh3poOIAGMAfC+8botdOFjssMoA4DttvIBTs6IaByAcQDQOEXp261Ng4QFynoLlamUyABcEEeMiYwv4C92+xx3u1F8VmYfmNxVjcM3s8vj7tKOXR5Lpxgjhh2rbTbbpvCmIzhl0zDGsXJ9fGLZsku7SrbPmm3f2fElAHJ1jhxtIvp0H+eWim17mTnTlbFQL2jRogXn5ubWdBiCIAgJZ8WKFY6/aXVa6BDRgwD8AN5NlE9mfh3A6wDQr2NjXvpkN8tGV1FF9q0xQpJo0fwFtsXoBGmRO0Dhxi47aqot0RfVpxLThlXTzoWA0RC0C/MZrK+pANjjKsZQn5Fj0HwAENunBgD2Y+S0bwyofgoeoyhoDED1RPRjRfUprnyq9mMUwadfA+CP0LYNv0qAFtunTwWgJsX0BwB+n4LA5yLKOfdVKHBzfhiA3+eNYhMUqb4KT+BYRrsRoakEVdXbDhfZoXXKy5Ng/Zw7Cg8GVJWgaqad/XNMgdBVFfD7gz7N9tlmDwA+H6BxqE+22Zjb/lI4bmt4YEJ9Jjc3F8uXL6/pMARBEBIOETn+ptVZoUNE1wMYBuAc5kDXYyeA9hazdkYZopRHRmFQA1/sYFzeOScNAFFsweT2TjwMocMufAIhnadobZNKevsx77DDVYcb1g532O1nh/cufJIKXR242e/A/kQ/puTyOCpw6jw6p0WISD/nMSANYMW2P+brsOoMkMtAVQ51EEUcxLIBAGYl/DpysmeCpkU4jzZ7TdWFDseI0696Il9HITES/D6v5RxFtq0oTwKREmoWEBJWYU3w28Wgza9pX1YWKnSCkC5oDVR/UDw5umT9ulVVoNyXHO6O9TatwqvCF37cOcRej4Ndfr8IgiAIQl2mTgodIhoC4B4Ag5i51LJpLoB/E9FzANoA6ALgR+i9ky5E1AG6wLkCwFUxG1IYaBhN6MTZWVDhOqvi1jf5Y3fgrT5j9o8ZYH+M7Ivhg0xBZhNm9iZIBVh108M2fNqFjtP+KdBzeS5gxZJViZIpYy08nsiE73fQkcVKtdhE8U0K9BidTlCY+FHgJlAiI/sUUugQIxBZlNhiYI0ALYZgZv1YamFZL5uNEYzqN0VOlGwoAH8Fwf6VFZZdYb3jr4sSOHfoLddARUUSglkiCvNpDhvTNILfr4RdP/b2NSaUlSWDHYQOW+sy4PMTVMsxChck+v6oGlDms2R07P4sMZT7AdUQSBGHd7KhfwVBEAShFrBx3jIsf20+Dvy2G807tUa/m4bipGGnJMR3rRc6RDQTwFkAWhDRDgAPQ19lLQXAQtLvli9h5puYeS0RfQAgH3o3+GZmVg0/EwB8Br1XM52Z18ZsXGFwE9UIJIpdWG/Shtmp0KL5sWzQjOxCDJ8MACpAbkSROXwrSucngF+Jw6ftbjgsfXXLfpM/xkEyO9LsMNTLKihMkeUH4ImVcrLG6TDkiW0+nbIpTv7YTNJEPp56tgsgDxmpPAe/ltcKAxpHuUCsx1TREJYxiJAZ40g7Qwhct8zBeM2NES8TJnAkoWPx4fcpYL85dMpBxIRkNjyImGWwZNn8fo9l2BwF47RnVhio8Fm/2oLnOTDfxahTXp4E1kKFTuj+62WaBlRU2If3BcVEcDgZ4WipVZREzgD5fAp8avDY2IWO6VNVgaN+a0YnfH6Y+bpc1e+nmGV2GwdtJAiCIAg1xsZ5y7Dk+TkY/MQ1aN23M3av2IQvH3wHABIidmq90GHmKx2Kp0WxfwLAEw7lnwL4NK62PYCaak85OBha+/DRehIc6561xc7Jj5NPzeGuthOaIYicOsT29yF3rp2ggE/HDizbbFUA/hiZCtNaAxzn3thPgw/Ot6Uj+uSQ7U7zJhSCMczNAdtdfjYzNSHnJ1jXfKWpipEqihJjoPMddvCC15Y1E0NK+EmnYGceIP0/shWbL8w3ZP5DhsC0C5jQTr2eqdFtQzrwYdegLob8fqevFwp77dc8sGftWA239/u8UK3zfkKyK6HCz1fhDZnEzwieBuu5LytLhqpZ4jTqsK1tU+hwiMigQBbQuvslx5JCMjoBX3ahowI+VQm9hAwxZj1NqgaUhHw9hF/kZkkFNPgCmbygzLX+BbaI2hEEQRBqmOWvzcfZj12No0UH8fE1k3DRtFsw+Ilr8O3j758YQqcmYQ/gb+rG0NIlitZ5cJEcAmCIEth6JREa9rvKveg+tZDeUkSX5FcRcSUs63u7eIpkawgdxzjtdTWAzcyGQ7/ffK94EHvomilqVArxD1jPl23InZPQsQs3BuAL3v2PmNFjgLwA7AtGBHxa7/YzSHPYb3tVs4caNgTN7G1bOvzEIZ1wJx1lZiX0RS2cMyQhE+s1Bax5AnbOPgFVU2zD4SxDvWxxan6vRYSYMVGYgPBVJEGziBK2ZOSCWSO9rLw8KSC+NPP8OMwtKj2WBGav+TbEp/XgqxpQ7jMXI7CslmYRJma8JRUeAN6QrIzTR6RCA3yW42cfOakF/lVxEFpA4Fh9Be31V2Xwo8Ly3n56WD8M0OwHVxAEQRCqGWbG/k27MO+eN6AWl2JH+T483/8s3Hz/LTjw2+6EtCFCJwqsAP5UF5Pt2ZxbEsNOYyhuOhf2268R7Qjkd/DpVM/0F2uYncZQ/AQKmagQwVaFsZKcg43lPanGPJ1IcYX4JEumJspQOx9AHsMmmj8A8CmRh+5Z49RgZEtixMik93zNzm6ERcigAaQouuOADyMGU8layskQJmEjvWztW9c2COi0wKg3q7EScszN0Xb2TnzgUnPaz5BtBGiKvpqbzd6+BDKrFDpHJ9CZtw/l0if5axqF2IXPMdEzRIGMDpvCJLRdPRYFFRVeiyAxy0Pn1TATyiuSLYKMQo6F9ZhoUFBWoRiLCYQPWYPl/VFVCcnKOIkcBuADo8wI356lsdapgIZDUMGGVdAnh9gxgGPwwUda4HRZ61jtNFE5giAIQg3BzNj2XT6WvDAHYODAnv3oMXYwzh1+Ks7fvQuP3HAPrmh9RkLaEqETDYXBLlddc5p8HIYPYIq9ahQYxiR2W6GFQD9ZiT2XJ+jThXhhgqZY5v1E6vQzAI9l+omDv0DSQQXgs2R0IrYNfbKKYi4c4GBoLQoblxUhXs3wG+vZKqpirFuNUFt7T5UBeE1BFEVoKdDXbjbnmTipCbMdlQ2BE+1OO1lEEJsl+mEKVTF6ZkzT9JSS3Z9pZppa5lqZ+8BW40AnnqFpDGaPzcayW0bWhNljDHFDyHELDv0y/tX0Fc1CsiSWdq2XgKYRNDVY3355mEJG0wCfP/g54xDBFire/CrpyzGzbQSqTcj4GSjzhy7vHGZr7E8ZhwoJJ8GjAfBBRVlAsoTaWuuWw49D5Lck+4IW5hA1s95RVKCCNDA5iyJT+Gjg4GQeQRAEQagmdi77FUuen4PdKzYhtW0G1lIh8lLb4z+fzMH7943Dd+/Pw1Wt/oD5+3/GXxPQngidWETTEU63amPhaGsTIJa3FMEsxCDaJB37HX+2lEeIhfVZG852EY4HRfRnqei03V5m7W3G8mnvFVrfhvXCyWG4l/09WTSEtaNKYcfA1BUc1uO32lmGtTm1GWiHwERBkWM/xtbjoISWhbq1iDmr8AnZb4tza3bHVEuW0w6EJwAD+s88BoEYKKQ84NpybEMaDjs/SmgSy7imiUyxRFAI0EgXOKEJLwrLrFg9mxPeCPox1utTcNdtQwsDrjj0NRltBVaIZ9vhM48Ph54yu+/gKY75oTGwXpdmPfOTah3yxsY+BsWdKSnZtsR5jNsjgiAIgpBQilYXYMkLc7D9+3VolJmGQQ9fiYNtCdef9Qz6pnbEBZl98VyX67Fp2nc4854/YfylLyekXRE6USCV4Dkc6RBZbzUb9rEc+gGyDmOKKFwQ7J9G7Qcx4KPQXJL9drDpU3PrE0CF5f5+NHGiIWz+ieMx8ANQCa7m8/hMLxEySqa5D2DVXK3L4sPJvpzgvEqZLVqfx7ICV5QYQWCfQwbPyadmLNVt3RYWJ4UfS7tACDluZPMR+cojSyc8RJkEtI0+ZI4U673/YLaFwAj07AlQFD0f4HSc2aKCPB4VXq9mUUZsEQ6hWRVmNWSuT8CGg7GAAVUj6MvtBdtjhzo6/vAFEkAh60IwGxkdNfTwmrGwpa5fBbxEodkhix9TDDMDaoW+XLbVp9N6JRWsIMV2XYbEYdoB8Fgeahr8C2ZpzG1l8KPCkrkNXViQLf+SiweJCYIgCMLxsXfDTiydPBdbvliFBs0a4/R7L8OhbC9uf+pJfPHFl/B4POh75Tm4Z9IzaNKkCQDgq6++Rvfu3RPSvgidKJAfSNnj1KOzvY8178VEhfOzI5065258MkVeXjqSTzfP3PEBQfkU0pN08GdZNSrMxhyWBUCN8EBI+x14w2eYnQ32EcC2y9fRJ4F9Np9hGEOeyhU4rvhmb5sB9sWyM3z6vLAPC3OKWdMI7FciNGkTiEzBO/R2YWs9v2T7l0Pfm1k4UgAylurWMxe6qglm6UKjIpUinHMzJgInAV5jtQh2GAbIIbW0wIIAZgzhOwGQokJN0oIiJOArNEPEDHg9mkUkOcfLTPB4/GDNG2gzZMqZJW5NI/h8SUEBYpvvEzjfGpBS7g2sTGdfqMCKTwUqNG/4OQSFfPx9qhfNwsMPE0+60EkOXV6aQ22sb36EIAiCIFQNBwuKsPSlefj1k+VIbpyCAbcMx+FOKbjj6afw9dffICsrC5MmPYPmzZvjuQem4YZvH8O+HSXIaJeKtQcX48Hn7ktIHCJ0okA+gmePi0MU6c66kyAih85+VJ+RyxkwVgmz+SRn+4jDx+xN+AlOyy/beqfB5+jE8qkSONoDKcN6b7F9aj4yREkE4WY9Tqrh096W3WeFB25Eib68dKjQiXi6fN6o59x8q6mkZ5NiHUtGYIU0p21BglmfqNKW2FiG2siJBEQRhwskmP4sq/JFiBEEEIU+eDY8a2P4I9VYac8Su22fGAApClTr85jsx9KSbUlK1kLFSpgI1sWPN8kLzXIuA2YcGoemEVTVa5xr/fg7DZfTGGhYlgRmm2h1EGV+leBXLddwwHeozwo/UO6zrAwHW2yWZnwq4Dc/a7YVBcMuLZmjIwiCICSYkl37seyVT7Du4x/gSfaizw3n4chJDXDXpGfx7bffoVWrVnj++YkYN24sGjVqhC8/WIZOyf2woeIHbDq2AZ0ruqJTcj9keTolJB4ROtHQCHw4xVXn0w1sLseM0A5IZf0B0DsrFLsTH+zBhQ+9cfSJCJ3pMDvTNkpnX4UlU+LCp33JZyeffoDh0qc/ho15N98PBJZQiyaINOgProyU8QnzGdrhd6yjGQIm1oIJgX9j2CJUq0T1SYBCHHwPW7hW3cEMkOacRTTqM+vTYhSPGogjxI1NIOiCiMMyM0GfFHi+jGJZYtB5apo+PM3jDa6KFymbAwCk+PTFFez+rMIE+hoVzEkhde1HVzOeJ+T1lgPwhsVnF0+qCrBmPheIHMUIa7pdhS/Z1jZC5hCZ+P3m4grWz2SocAzUOwxBEARBqBQb5y3D8tfm48Bvu9G8U2ucfNUgHNhciDXvfQcAOPnqQTjStRHueWEivv9+Mdq0aYMXX3weN9zwFzRs2DDg5/89/SkuGTsYy79ojfTCPLz1v0ewd9dBvHzn+xh8uTxHp0phlcBHk2MbBoie0dE7a8cxDdihY8dhD+2M4d9NRseaAYnmM8LwOqc7xxw2dCyaz9jHKESUxPDJsYSO6dPnzicz9Pk0to6rYx/dvqJZpBgZ+nweN9cHE6IPxbM1Fys7B0smJ2I20NissL70uNO1GMjk6J1+RYnxoFTTp/nQTftDQ232GiN8vyNk3VSN4fQA1DAxw0qYE7uN+VZVzRU9woWD1aWieGBPl4QtQw19f9lc5S9s3lKwrqoCPp/1EaBObev7qostb/hcIoc4RegIgiAIlWHjvGVY8vwcDH7iGjTv1AqLnvwQ3/xjJogI3S87HUfzGuPeFydhyf8tRbt27fDKKy9izJjRaNCgQcDH0cPHMP9fi7F1fSHe+eenaNspE397bhRatGmG1rktsG1DYUJiFaETDSZwRfRDFFdGxtYxdofDXAyrS5fCIGR4XQyxowUyTxFiCWnbRfuak9CJUDfi3CRb24FMSWzYZYZK359ID8Wx2UW4qx9qaPy5idOlT+tpjEkgO2MoEOt5t9ePfboNV8ZOUXgGxjpCj5SQXEoMQrMvYRkgA0UDiFV3nzmNQkVABEGkBZ5UGiE0S7nHw6EZlTAdZw4X1BDpQrYvW61pmmWbQ5wwRKMn8rHULN8B+sNfg4tba5EeVnsc91sEQRCEE5vlr82HdnoWHhp9J3r4WqKBJwlJHZoDJT7cv/BV/PjEMmRnZ2PKlJcxevT1SElJCdQt2rYPs179Cp++9T1KS8qQ0igZV955Pq66ewg8Hr2/9NM3G5DdtVVCYhWhEw0mfY5FPFVibTyejI6Ty7iFjkmUuS0cHLITGQfBFFOMxY4zKEqixxmeKYni0+Uxijj3xW4XyL4ksO3AteHS1m1P1YVPCoy1i+faNKRwhCpEQNiTbCNldEgPgtmY/eI0NwiARyGECQinzBKgL3CA8KyQ/fOnOZ2fCNkqIkCz1vc42+vP1IoxxM44h6rqkMmy22oAha1iYssqGe0wm1md2NllQRAEQYiXY/uPYP+vu1CxcRv6Ujt0GNIbq1KK8NjLE/F0zlXY4yvG669PwXXXXYvk5OCoqPXLC/DhS5/j249/AgCcfVlfXPa3c7Bz0x5Mf3QOep7WCScP7IxfFm/CpPHvYMzDFyck3lovdIhoOoBhAPYwc0+jLB3A+wByARQAuJyZD5DeG5gM4AIApQCuZ+aVRp3rAPyf4fZxZv6Xm/ajTqK32kV8Yy+vSaHjrm025/3E6gy57Cy5zagA8YgSd3YALMs2uxnW5yIPEcjUWIkgyIwtNdKvjKdRl4cymrix4vgc20jaWh+T5tCZt/nUouyQbViWyhqIyWGVw1BDj4fCUzNO7hlQQfC4mesV7dq0NK8Zi5NEFR0M6M8zdf4estdVVYIn5KMbYeilUOMQUVfov2MmHQH8HUBbAMOhryz+G4DRzHzQVrc9gLcBZEE/3a8z8+TqiFsQhBOT0n2H8dO0hVgz81swGGldW6PRkM54aNrL+Omnn3Fquzzs045i48Z8JCXp809VVcPieavwn5e+wJoffkPjtIYYecsfcclNg9CyXToAoGufHADAy3e+j20bCpHdtRXGPHxxQubnAHVA6AB4C8DL0L/UTe4D8AUzP0VE9xnv7wUwFEAX428AgCkABhjC6GEA/aD/KKwgornMfCBqy0xg1eVcCBeE3YlPRIdDc5N9ia8tF/0+i8/YHb9o2Qqnu9eRfZKDndsMSCRCJ3fHl32J7i9g7+b8BI55YLyZzYf9hQtCKkUZDuf2fMN0Y6b9ouxXwC5On1HipGhPpbVVUzQODtmLgj6NKHKc1rk1inXCTsQK5twkF+ecjKF4Ma471Q94PP6oNpHmFbmyF2oEZt4A4HcAQEQeADsBfAygK4D7mdlPRE8DuB/675sVP4A7mXklEaVC/01byMz51bcHgiCcCBwtPmQInG+gVvjRaWgfPPvWFAzmk/GvL/4FpV0q3nhkErzfFOKVFbPwaFISSkvK8L93FmPWK19id8E+tM7NwM3PjsSQawaiUWqDsDYGX35KwoSNnVovdJj5WyLKtRVfDOAs4/W/AHwN/YfgYgBvs/5Y9SVE1IyIWhu2C5l5PwAQ0UIAQwDMjNo2ImR0KtlJiLoKVoQhOLGdAm7uHgeJMUwGsKwOFyMOt1migBhLoCALm2gey2fs4XCu9yeeIYjWPm+0hEQ8Pis1/NFZQAFANP0QZmt9FUvnuM0SBexiDLGzPNQ0VrykxGMXYR6LJTaNjc+Ei2tEYXJ3jkifQxNjr/X/O821AYzhlhZrBfpS3TH2W4ROreMcAL8x81YAWy3lSwD8yW7MzLsB7DZelxDROuiZIBE6giAkhCNFB7Hyjc+w9oNF0Hx+dBzaB+sa78dfpj+OXQd2IS21Lf7SbhgaQcOB9zaiwYAOKN/VFFMfnIVPZizC0UPH0PO0TrjxycswcFjvwPyb6qbWC50IZBlf9ABQCD19D+hf9NstdjuMskjl0WGA1QQONXNxp9VpSFTUOm465/F2ajSKnYUIm/sQOQ5zCojjA0Nj+o/g02mYmeshg9GFTmXOUXT7ylxDsVSESw/Rhm6F2Lm7SIKiJLJwCtrF49NNRsfiM8YxIHOYW4ysjjk/KASHKrpuMhcuiN64xzJuL5qg0J9fFHFreJxOPm2/G2SsBhhrdUcROrWOK+B8420MQoe3hWHcCPw9gKUJj0oQhBOOkt37sfKNz5D/4ffQVA255/8Oy3gr/m/GAzh48CAGDz4bF546EusXFKPl44NwxdiL8crD72DWlB/REn3xn5e+wJkjfo8/TTgH3U/pUNO7U2eFTgBmZiKXvTQXENE4AOMAoH2zBgkdugagEtmgGB2WeOaquCSeeT/67sSw1VzaGbZwYRvPflfJYgQuzyO7XGCgKuZvVQlVMOEoVBRFFibxiKewpa0j+FQUgr6+tQPW6TyB8CimKGQPuQpTCywyQGHthTYOMEV4iK8NIraJmHiyvUJNQETJAC6CPkTNWv4g9CFq70ap2wTARwBuY2bHBcOtv2nZ2dkJiloQhPrG4Z37sGLq/7Bu1mKAGe3OPRnfHFmHu6fehbKyMowYcQnuvfcu9O/fH3/p9w8Mv60jXn5hKl6+byaaKa2RnJyMRk0a4rXv70dWdkZN706Auip0ioioNTPvNoam7THKdwJob7FrZ5TtRHCom1n+tZNjZn4dwOsA0KddGic0owNU8u6+UTViYTxDwmJnLOIbuuaCgDBw4TNA7IxSoofDub3LHd8wM3dmcdkmeOW+uPVViL2zMNFFibu5KhR2L8HBJ1t9ukCxO3X2qUQauobQYoYuImJlnZgBjaPbmHgUQNNX/ghtyI6iP7DUDQrDWMo9uk/J6NQqhgJYycxFZgERXQ99EZ5zjKHYYRBREnSR8y4zz4rk3Pqb1q9fPznzgnCCY3/QZ4+Rp2P/r7uw/uMfACK0GtwdnxYtxy0v3w4iwjXXXI27774T3bt3BwAc2HMYW9fvxpHDx9BsT1dk5abj0vGDce5VA/Cn3HtqlcgB6q7QmQvgOgBPGf/OsZRPIKL3oC9GcMgQQ58BeJKImht258F298wRhiWjE08n3Wpktz6OTmqEDkukUf6V/kXT9DvI8TmkyCYOQieqSxdzi6LNk4m+37GOvwufcWdfqs9nperG4UoXJU7jFu1jvSodTahnywg58ji17VQJetYlzNRh2B4T3IqnaIvCWZ/943EpRJkBxfZ8KQ78L7Rdx1XsIvhk60GLEKdQq7gSlmFrRDQEwD0ABjFzqVMFY4XRaQDWMfNz1RKlIAh1HuuDPhtlNsWif/4Hi578EORR0OKsLvio4Ht8+NLraNSoEW65ZQJuv/1WtG+v5w/WLy/A7Ne+xtcfrQAzkN6yKW59/goMGHIyPB4loc++SSS1XugQ0Uzo2ZgWRLQD+uppTwH4gIj+An3i5uWG+afQl5beBH156dEAwMz7iegxAMsMu3+YCxNEg5mg+Y2OSGX7lWGdngTcjWf7yxjDvOJ1H/GBodFwECLWlzE68vGJR+NtpbIq0e/Gu8qWxPAXYRZMxNL4+57Hew1ZW6QI5fG2H1qXAhOEXPh0nEzEFj/Wotj+NAZIf+ptbDzujqXmqm2y/Bs7Tv164/Ayu1eGsUR7bNjBSeAhpe5cCNUIETUGcC6AGy3FLwNIAbDQWHJ9CTPfRERtALzJzBcAOB3ANQB+IaKfjXoPMPOniYxPK/gAvPYZ4PAGoGlXUN49UHIvj11REIRayfLX5kPtm4Gnr38AXbQMaARUtEmBv+gIJky5B+np6Xjkkb9jwoTxyMjIQEW5Dwv/vRSzp36N9csL0LBJCi4ccwaystMx9/Vv0LBJA7DG+GnRhoQ++yaR1Hqhw8xXRth0joMtA7g5gp/pAKbH3b7miW0Ul8MEu4sjE+B6ZFSifVqGzSXGIeKbo+Oyfdf7Hc/xcWnr+rKIfLM+jPAhYc4OKZ7z41JjBefTuPXpYjCjSzsFCD7MM1YVBio1HC5qKtLdkErNQeg4QVq8IyX1bJZkb2o/zHwUQIatrHME213Qb+SBmRehiif1aQUfgFc9CjTJAdJ/D/iOgJfdBnXHPFDmaYC3MSgpFfA2Bsx/vU2ApCb6v56GIc/GEtEkCDXLruWbsP/XXcCvQLekVkju2wovff8B1n69Ac93GY0XXpiEG274Cxo3bozinQcw/dE5+GT6IhzcewTtT8rC3yaNwrlXDUDjpg0BAC1aN6uyZ98kklovdGoa+/Ktzri8cx338CQXLgNzVRLmEXEt3ezGYzz7Hdd8mnh9xp73UylRbxiqAQAAIABJREFUEiXmymWdYuFybpJL1zGe0xnetGtREk9Gx4WZ47A5B+I4lvqVHlsR6itbu33gkLvzQy4ziEQEKLa5PBFwK54EIRa89hnQgJfAy+8GSjYBvqOAvwTY9hF420e6TTQHpOiCx9tYtyzfDzTtBrQbDmh+8LLboRZ+BaXtECAlE2jQEmiQCSQ1jfnwYBFNguAO1jQUfL0GK9/4DLtX/gYNjJLWHvx7+zfIf3sDunXrhgdH34ID3+/B32/5G1Yv+hUfv/Y1vv/vKrDGOO2Ck3HJTWehz9ndwj6XVfnsm0QiQicKzOT8HB1HXGYC3HYq3Xb443DpDoozs+HCrIoEXuV9RqgXmNbhRhDVDWos1IRldIL141l1Lbpd0KfiUjyxBkRfbS3+a1GL8bBS02dQjLnIZsXUYlWaBBDqE4c3gFr+AcqwFYEiTa0Av58O5dICwH9E/zMFkP8o2HfEuXzbLKB5b0BJAg6tB8qKAd9BYPPb0Da/HdqukqILngaZQEomqIFFBDXIBB9cB2yZCer3LND2AtDeJdCWjIcGiNgRBAO1wo+NnyzDT28uwP5Nu9GwZVPs79kAn37+GS709UdeaX+0aXwGeqRkoM3acny0ZwfG9n8cW/J3ITW9MUbe8kdcNPZMtMqpXQsLVAYROrFwldGBm2kLbqcYxI3rrIFT3ZgFCSABQsc5zuObRxR24zueIVxuYHY/5igmlRNfLnMq7l3GNXTNJVHvJVRiBhPH+kwEfbLbp6XGvN8R9EEuMzqKYR3LJwVeu8g2OsZZmXlYwglP065A8WIga1CgiPb+AE7rBmrQAkCLsCqRrlB18ztQzl0IUpICZZq/FPxBSyhDvwfKisFlxUDZHl0ElReDj+3R/z2Ur5drFSE+edGfASUZ3Kg9kNIcvOx2aEe3Ao2zQY1zgSbZQIMskLsxvIJQL6g4Wob8Dxfh5xlf4EjhATRs1xzrs0vx+lf/ggZG+4bdsE1LxZDuaSgt3A8/H8UPm8ugVXSFx6vgrlevweDL+yGlYXJN70rCEKETDdafXJ5YavcdVUaMG9eV8ZloAeHGZ2X2oZKCLHJTZPs3ET7jNYpv0YOEnfo4+tauRZElSxR7WQB3exK2CnUEwkeDRVtYw13bbO5PDHM9SeMuo+O8UIaIGyF+KO8eaEvGQzn1VSBzIFC8GNqS8aDeD8fvzEk07Vumi6bmvfX3UaozM+A7DJQVQ5v3O9Dp/wLK9wGl24EjW8FHCgDfQfCqR3R7s6KnAdA42xA/Ofp8o8Y5gdfa7q+A/GdlCJxQ5ynddxir3/4Kv8z8BuWHSpGU2wxfNSnArC+nIS0tDbfdcSsmTBiP2we/gOWH10DRzsBv2wmkVOCocgAtW7TGa4sfiDlstC4iQicqFOkWaa2BOc6757E6nQi9j5wI9CWwq6C7leAhcZUdBugudxCj7XgPThz28ZzPWFZumw1mIVw3HRvFdBZDHMTTnttpN2F2UQJwvRa0OzPdnbtnEoVOIxKBI1QeJfdyaAC05XcGhUDvhyslBI5XNBERkJym/xkZJcq5LLCdi76BtvxOKOd/Axzdpoufo9uAowXgI9uAo1vB+3/SxRFC869o1A5o9UcgqQl4+V1QS36D0u1mUFLTuPdTEKqbQ9uL8fP0z5H/0WKoFX6oOY0xc89SLF2wBp06dcKLLz6P0aOvx9H95fj0X4txcPcxpKMTNvy0Fdt9a9G4g4p7H7wdb41fVC9FDiBCJybHMyysOjjeecfVNW854fN0qmiIXaLcBvwc9/Vjqe94tz4uDw5+4gsxkulxHbcIlZ2LdTka6/vY9XXt+LwdB7N47ne4XBDAXLAhpmmgbbcLO9Tu7yyh7qDkXg4kIMNRXaKJvI2BtO5AWnfn0eS+koAQ0n6cALQcqD+N98gWoGgjoJUDvzwO7ZfHdQGU1g1k+kvrrsednHbcx0MQ4sX+kM+Thp2CfRt3YtP8FYBCOJhFeHPlJyjYsBuDBp2J2ZM/wpDzh2DZgnw8cc1bWLYwHwDQsHEKRt1+Lq68awi8SfrypPrzbzbV5O5VKSJ0YpBwoZPADro5zCyRITKzPsfA7rOW3RyOlMk6fuFWFcPMKnGCqmyuVC10GeHwVPoSdJ3lNHJ4iR6r6S75Ekx4UcjbMCgwuc9FRqeqJgIKwnFSG0QTJaUCzfL0v++KoQycEZg3xJoKLtkE/qSvnmk6tB58aB14zyJALQt+qhq1BZpaBVA3IK0beNcCWQlOqBI2zluGzx97F7MPr8T27dswUjsD+5/fBUryYEuzo3hz+RyU/urDFVdcjlm334pWzdvj07e+x59vfwj7iw6jRZtm+PN9QzH02oFYu2Qzpj86Bz0HdsbJAzvjl8Wbau3zbxKFCJ1oMNwPbXHpLpGyybwZnViflHCfVbHqWtCvCzvXDhE1dRu/iIrzSNYBcRO/u8QF4PpIxnWpuT9H7s4/xzXniEPfBkOy2bldySSQJXIZgiDURRIimmzzhkjxAGWF4LRuUPLuDpixpgJHtxrCJ1//9/B68KbpgFpqWcPGAzTvBXS5EeRtDP7p/6CyBk+HK44vTuGE5/N//hs/7FuHyzuegTJtP9QUwg97NyA3uSXeKvwaE+69FePGjkXBT8V47+HvsOLL9SAC+p/fExeOOQMDzsuDx6tnb7Ky9VXU6sLzbxKFCJ0o6CNQErwscsK9uRj6EqdPtvfA4vXgUDfeoZ9u9snNeNJ4j01c9jFtjfjc7nyClx4P+HQxLyvRq6nFexzjO01urN3OSXLfsvt9dy+eCBx+rI77KyeBYzAFoZ7idt4QKR4gtSOQ2hHU7oJAObOmD4M7tA7a0vG6yCnfD/z2Flg9phv9MBbq5n+B0vuCMvoA6X31hRHq6VwIIbGU7juMte99B3VvKQZ4OuDogcP4rOwXLPx1Bdpnt8OA5C5Y+s2P+Or9lbjjrJdxYM9hZLZtjmsfuABDrh2Ilu3SHf3WleffJAoROlGhWj5HpypiC5lGnjAqLcai1KuUy1iV4vkBqs2XhhXXK0Ek+qzHPkBkrMRMcHGNxCUEOfRtRMPEL5MRbx8m5ieuijKignAic7zzhogUoEmu/le+F8qg/4CUJLDmBw6vB+9dBv5xAuA7Ct7wCthcHjulBZD+e1B6H1BGXyCjD6hh66raTaEOUrxuO1a9/SV+nbcMaoUf5Zofiw9ux85tzdFEORkjugzE6QM64NB3KzCu/z+hKIRTh56MC8ecgVPOzYPHU7sX0apuROjEIoFPtmfE3wmK6TPeVdfc+EQd6VbVgaFeVUa8JygRS8PFYa9nieJznLDrmKK+DYGrbDUOd18Irlqn+DJPdeUSFoSaJlHzhqzD4EjxAs16AuX7wGnd4RnyLVgtBw6uBe9fCexbAd6/Epw/EcyqXr9hayCjry5+0vtAO7od2PiqzPc5gdBUDVu+WIVVb3+JXct+BbwK1mq78PGWRchr1APnteiOFtecgoqkNCz59yKUfb8aG48quP6h4Rhy7UBktmlW07tQa6nTQoeIbgdwA/Tf9l8AjAbQGsB7ADIArABwDTNXEFEKgLcB9AWwD8AoZi6I2gADHOdzdKJ2MhKkIMLaON6V12zv6fhGrtVK3C5cUDdEY2WGJrlIl8T1PBs37SV6z6tg4GcNn2+Xs4Pi8urepyAIiSDWMDjypOiZm4w+QJcbAADsLwUOrALvWwnsXwHe/xN4x7zgJ7NBK6D9JaAGWeCfHpT5PvWU8sOlWPvhIvzy7tco2bkfFQ2AhYd+xjfFv6D77/Lw8KQn8ck/12D14cPIm70cqV7g5KZe/HCoCGjaAdfcd0HsRk5w6qzQIaK2AG4B0IOZjxHRBwCuwP9n77zj46iuv/2c3VXv3XJvYBv3iulg0yEhIWAgQIAESEJCCJAQIAVCCSX5QYCE9kKA0A2hBhIg9I5tbGyMe2+yJVmyets97x+zklW23FnNWpI9z4f57O7snXPvzKzM/c4pF04E7lTVZ0TkfuBHwH3B1wpVHSkiZwK3AWdE68dc6JhNHDTmyV9X+23r0zg8W9tTJae7h42kb8ye3FsRT7Fdy0jWnV6Y2960tydvpuMBkI5aa72GTv75SOsfpePEy66Li0t3iSUMTnypUHAQUnBQ2z5t2kXgPzOR4tloYyWUfobWb7W+/Oxi/JteRgoPRQoPgezxVv6QS5+kYm0Jix9/l2UvfkpLfRM7Emp5eeunrGrZwemnn8YD069i/bydvHL9Ypoamknsl8tLjctZsuETRowZyjW3XMWjl3zU06fRJ+izQieID0gRkWYgFdgGzAK+H/z+MeB6LKFzSvA9wPPA30RENMoM2DxHx9lFAk3tO/7cXOPxpDsOCTrYFY2GuRgxnXeYkailmxz1CrI7r8WM1obRrPZuUdJq0/kkXnuCOaq11jAzx0WJzevpiiIXlz2KE2FwkpgFdZuRaXfi8SRYD+hq16Ml71n5PhWL0c2vWP8aJGRBwcFI0aFI4WGQM9EKm3PpNXRe+2bqxceTnJ3GV/98h40fLkU9sKh+I2+ULCBlUC7nXHIh2S2D+filxTz6r7fIyEnl+B8cxLw3l3LF389hypGj22zv7WvfOEmf/atQ1S0i8hdgI1APvIkVqlapqi3BZpuBAcH3A4BNwWNbRGQXVnhbWdg+en0xAiBU1aYYkaAWcH7KKzHOu0Ic1TZvj8U3ZlClzZa91tYR7NpWorH7/MIPoGewU83N3Khz1ydYs9DRMVqiyY54slv1rU+4W11cXGKlfb6PCKQPg4yNVr7PSfPR2s3ojg9hx0fojo/Qrf+x/lXwpUPBzKDH5zDInYJ4Ewmsn+uu79MDtK19U/0lH6/6krN1Njt/sw0CSoPXz//KFvFp9UqOPOZYfnbKH9mwoIIP/rYBr28TM44dy7Fnz2TmCeNJTErgnbnzuONnT3DlvefuM2vfOEmfFToikoPlpRkGVALPAcc7YPdi4GKAAelpqL8bs6DOh8YjbcHJp9Fxm0Npt6dn0skxYVuAGuaVGOfPd5nFR6jt5bBNe2ce6kfYU3S3b3VUPLVWO3M6tBAJdJL2JvW9IxGD18kVRS4ufZKo+T5pA5FhZ8GwswDQ+m3ojo93C5+vrrf+8r0pVkW4um3I+GtgxHnIzi8JfHYJAXDFTpx5+9anea1sARccfyrfS55Mc20j2xsrSRQf9+/6gO8e933G136fxe+v4X/vfcXICQO55LbTmDVnOjmFmR1stZaC3pfWvnGSPit0gKOBdapaCiAiLwCHANki4gt6dQYCW4LttwCDgM0i4gOysIoSdEBVHwQeBJhQkK/d8uiEmmfYmvQa2LeRQ25C2/B6UJBJiA+dxYLdall2VlUxmlR26b7rQfY8BqFcaeEONBeOuy10x3MRy4TZ6s/xSLOw9jqN0bBfiSgiwpy3kTAxvGbhYh672DPpN5xdV/C4uPQV7Ob7SEoxMuQ0GHIaANpQCqWfoNs/tBY1DTShX/4GvroOLTwcGXA8uvgmZ6rNuXTB39TMmrcW0VJaywm+sZS+tZwt9fB1VTUVWTWcmdyfGQmns+zlSnIKA3znJ0dy7NkzGTF+YES7e/vaNzUfvkXF84/RvGUDCQOGkHPaeaQfdowjtvuy0NkIzBSRVKzQtdnAfOBd4DSsymvnAS8H278S/Pxp8Pt3ouXnAKg6+bjXxoRDu7wJ0677SidUD92fn7a3aq+MWwdtaVAszMimmhhzgo59mN8e85O28t2jWdW2/tvshzUbzWNgmudjF7t5Jwoeh3+bYiIAg+3DtOu6O4B4IoRddh5DVKz70z3x5OLi0lfoTr6PJBfAoFOQQafgX/UAcuo6pOwLtORddNtb6LY3AfC/MgHpfyzS/xgoPBzxpTh5CvsclRt2sPTZD1n6/Ec07aonoMq6mmberFvCpEkHkrplIOnlVVT7lMlHjuLYs2cy/egD8PrcghI1H77FzqcepOCSq0keM5GGZV9Reu+tAI6InT4rdFT1cxF5HvgSaAEWYnliXgOeEZGbgvseDh7yMPC4iKwGdmJVaIvSibM5OrGteROvSWZkYnyG3+7IjicqdvSYgSgx1YG7B9B1TF2bWJPe7oXwdTrvmK5klMIJRhfSsPgC2GgXpm04r0SsHoiwgkINPZimY7Tamv1Napcxhj9MEY+ToiQQ3Z6xCGvF9fK4uOz1ZI5Cdn2DDDwJGXgSAIF1z6ALr4XMkeiaR9GV94E3GQoPs4RP8bFI5sgeHnjfwN/Uwtr/LWLx0++z7YtVBFCWVG/gs6q1jE8+lEm5iUxomMaOeS1MmZhG/+R65u+o5YnHL+rpoTuCU16YnXMfIfu089DGRqreepmMWSdTcMnVlD10574tdABU9Trguk671wIzQrRtAE63ZR/QQMzDC0EM096osWTWU+6epZP3JkoLM1tm01nHcr5bHR6xTqQdJ9IoeniSanrR7dwcU7Fh114Uu2KcoxPZq9PFpsn5iKlNc+FkHuLmCh0Xl72dUPk+uvhGZMqteIbOQVvqrdyebW+iW99CF/wa5deQPjwoeo6BosOtUtjgFjYIUrlhB0vnfsSSZz+gpbqBCn8tn1SsZGdyOoPzJlBcO4Lt9QG+qmxg5pBMfA1NJCXV8cL2RTTXjuvp4TuCHS9MoK6W5h3baCktoWXHNlp2lNBSWkJzqfU+UL2Lsr/f0tY+ZfxUksdMpHnLBkfG2qeFzp7AbmngqDiYU9M2VTEVY3GoBGVm2EryN3OOmV8dY5+FSchP65wzYGozwlftvrPlHTLOK+kjdFCiMU6sO52ssUe03T2PfExnkRV+nB3sRLEpRtEIASNPljVGc8+T+ThdXFz2ZqLl+4gvBfofY4WvTQWtWYdufdPa1jyGrrw/6O05FJIKYPsHyEEPWuv4BIsk7CuFDfxNLax7+yu+fPxtdixYSwDl65pNrKivJj1vDH7/NNIrAyRkpnL6Lw7n/Re/ZNKpxTz0woMsW7mMMd4xXHDOj/nmtdKePhVHPDEVzz9miZxxUwjUVuNJzyDjqBMpe+RuGlZ90yZmWkq3Eaip7nCsJCbhK+iHr7CYpJFjqP3sfTKP+TapUw/GV9APb3YuDUsXkjBgiCPn6wqdSGgM1b2iEI+AIif1S2syvr1pqUOJNDHYFJNJquk9NEoMD9tw9xHtU0BCNu/m0/Qurqw9/3TexOtlx7sQ0yQ+QrtQHp1wvkZjmyE8PyEPDZv3E+I+Gdm0vE6hx9m1cIFls/OP0MXFZV/ETr6PpA9D9v8x7P9j1N9geXu2voluewu2/Q/AWs+n//HIoFOQA+9BF1y1VxU2ePTau9j4rwVkazKV0sDA48az/8BhLH72AwI1TexsruGr6hJqk4oI1A3D1xQgLZDFERdN4ajTpzFm+jBEhBHjB/KPP77M4/c+26tKQtvNh9FAAH/lzqBoKaGldLvljdm0jrKH7qSlbDtaX9fhmOr/vWoJmYJ+JI8ah6+wX5uwSSgoxpOV3WFNvJQDJrHzqQdJGT8Vb2Y2DUsXUnrvreR+/2JHztkVOlHoHevoRJrImobD2Qges51LFM1NpZbWsDUfj5ZuH6ryWITwPqMeQ4XDhbIZW4UvWzajYFZ3LcSaM+HGKq333MCuqcdAbPyOjELCohF+ch9xmLHk6ES0F0086e7XTmIw9GEBMM5XDViheL3hny0XF5c+i3iTofhopPhoAPxPpSNT/4xuextd84iV25NUAI2l6La3rRA3T0IPj7p7PHrtXWx97iu2ePJZU1HHqJw06t5Yw5e6mpW1pWxq9lDfXIC/KYPMlDQOP3cKR502jfGHjMTr7fjUqreWhG71xKSMnwpA8piJ5Jx1EeVP3I+2NHcUM6Ul+Mt2oM1NHWx40jIgIRFPahoZR50YFDH9CFRVUvnqXAbd85Stxb1bBVbZQ3e2eZlyv39x7666JiK5Bs0CqloZj/6dxc6MIXq1LOfH4Ljfx57bqdWsSa60TddTZJOxLkIaoVeNdb2SaHbNDFmmojdWEcP1fkJMzsMdJ13ehLdp0sy0TTub0a+9jXwaGzk6Zjlu5jZbq8OZ2DQTJa1V18xsEtb74+Li4hIjWaOR7APwjPop2lwD294ksPJB2FFG4N1vQ2KOVfRg0Heg3yzEm9TTI7aFqrL1ua+o1xTGJjbiyYWqlgbWNfjIS/KwrLKI1Mxkjv7uZI46bRqTjxyFLyHyEygnS0LHEm6mqgTqaizhUradltLtNG9aR9Vbr7Dz6YdoKS3BX1EGASv/ofSemwHwZufhKygiadj++A48vM07kxB89aSmtXmG0g48vM0ztPOf95L7/YttiZxW0g87xjFh05l4eXS2BrdIZ+sFBsepf4ewW3WtfdvQM0pTsWMWpmL1aW9Byug2RbvvJQo1vzZfjNPkmpuIoQgDCvmVqdRo1yhcgS/Z/bXpBFVbqyGEI/iVqM2KZvGg83k7MJ4Ov+OoXo6o1iJ+u1vXmQeSig2h050Quw6mWvs2Fi/tRJaRV8nFxcUlOl0KGyTlQe0mOPB+PEnZ6MaX0E2vomufgIRMpP/xyODvQPExbcUMeiM12ytZ8vyHLHz6XTI9iaRpM2sratjemMqOuiQSE72cmNbCDc/+hOlHH0Bi8p73WoULN1N/C8ljJraJmA6vZSW0lO3oElYGWPkv/QeTMn4KvoJ+aGMjNZ++S//r/oo3vxBPYnSRGm8vjJPES+gsU9XJkRqIyMI49e0sMYeuRXCL2PYCRK5EZiyeDW0qGkaRh5jdhkuL6drS8VwV86prkZOOtP07Uw0RIQQseg26jr3G3Jdj2LkPocPDQuaV2LBpls9jXp3NTkK+7fC6qGFx3cv7CdnOaL0fQAJdwuHo+tHFxcXFFlELGww8GfU3wfb30E0voZv/jW6YC95U6H+sldMz4HgkIRPo2QpuzfVNrHj9Cz595D80rCpDEEoa6slKSGFRhYeyQC4HHjuOH8+ZTvnG5Sy/50MOOXmi7X66k/Svfr+VG1O+g/J/3kva9EOom/8JVW+8REtpCYG6GkrvvqnLcd6sHLz5hZaQmTDd8sbkF+HLL8SXX0T91wuoePohcuZc0EE05Z3zExL6D7J1fvH0wjhJvITOQQ616VGUWMLNojxJtp2rAuGmKdZE3yxbw9QmWGMMfd4hjjF+Ik6I8w4jpkxMSmwRdt1vFAUzldPuS/OKcGZ2e4ZwwtbWUM2Va3RDpt4Xu+LJSGzYDIeLatPKuzH7DZv27eLi4mKPaIUNxJtoiZr+x6LT77aKGWx6Obi9hHqSoHg2pBTD1jfxHPRAW9nreFdw00CATZ+v4L37XmLnvPX4AkJ1Swub6zxsrhNakrMpam5mXE4joy89jBMu+h7/++fLLL/3f2zxZtruL1LSf9rBsywRU7adlvJSWsq34y8rpaV8R3Arxb+zDAL+NntV/30xWK2sCF9+EanTD6Pm3dcpuOSatn3evEI8SZG9MRmHH4eIp094YpxCtHurI0Y2LnI68F9VrRaR3wOTgZtU9cu4deog43IL9YXjbC29ExkxzUVoJUrOD3ZzX6LbbG1jFmNpL+zH+Cm3CWKzqpeRTdMJpc3EdDvrtBjZDBjatNcu5qT8UPqXAOI1vUwBWzZN7IlR+JbV1mPHppFwMrXpt87HROj4zH/DZuIJUn/x/gJVnWZi1mXvYNq0aTp//vyeHobLPoZqAEo/s8TOppehbjOIF4qORIZ8z8rrqVhEYP6VeE9y9ve5c8023r73X2x682sSm6A5EGBLvbCpTmhMT+HIU6dz+ClTmHDofnzw4pcsvvWvHN5vK1lJTexqTOSDkv5MuPqXxrk22txEy84ytl73CzKOOA5PekabiGnatJbmrZus/923EzGAJWLyC/HmFVrel7xCfHkF+PKKKHv4TvLOv5TUGYe1zc3qlyyg7KE7GXTXE45er76MiIT8f1q8q679XlWfE5FDgdnAn4H7gAPj3K9jOKoDNZK3JBQGU26xEyLUajNa5YD4uAziIalNQ9dM/F6CeeEAixi8MZGsGj6Jd8zx0V2i5IDYCV0z88DEkPsSxabx4p7GYWYgHhtFLRwU6pbwN/USubi4uOwZRDxQeDBSeDA65TYCT2fA6Eth0yvo55eg86+A/ifAruVooNl29bbb5txIy4JNZHqFKr/indCfCTNHsvS5T0mp9hNQpaJR2FgLDbmZzDr/IC46dRr7Tx7c4aHujOJKBoyt5tm1E/h4SROHjE/kjLHrGFBciQYCBKp20bLT8ra07Cy13peX0lJRhr/c2heo3tVmr/K5R63zbxUxuQU0b1pP9mnntYkYb14BvvwiPOkZYR8w59bXUv7oPXhS0zp4h5wqv7y3E2+h0ypZTwIeVNXXRKRrUOE+g/TwJDVyrk9rC1G1NU017dcRi61GAlgTz1irj4WyqaaxVtGvY9e2exERhYPzduNr04ZXMqY+oxVFMM29sTFmV+j0CURkFPBsu13DgT8AA4BvAU3AGuCCUBVKReR44C6swj4PqeqtcR+0i0s3ERHIGo2n/7Ew6SYoX4Cuewpd/zSgBF4ciQw5HRl+NuRMihpdctucGxm45mvGT6smrbmKXY2JrNu8i7X/KKGpGVbXQn1BBrMvOIKLT5vBoP2KOhyvqgRqqvDvLKf8ifvJP+4EfpGWySVBQdO0OYMdd98I99wELS2dTwZvVi7e3HyrStnocfhyC/Dm5lPx7D/ImXMBaQce0SZi6pcsoGxXhW2B0pcS/3sj8RY6W0TkAeAY4DYRSaKPRZA7HdkXU4pOJOwop7Z/MAxC4hwtHBBugKGryEVEO703GqfpDHovFCXxIIzO63w5uyvqzY41EBLd78Rme/O8HzNRouZ9C2H/he14uPtb72lUdQUwCUBEvMAW4EVgFHCNqraIyG3ANcBv2h8bbP93rP+3bgbmicgrqvrNHjwFF5eY6FzBTfy16Jb/wojzoXYjuvpha52ezNHIsLOQoWciaQO72GmWTx3wAAAgAElEQVRpamHQmq8ZW7ydhSsHUFM3iLTkWiYN2EyDXyk643tcdORI0r2Nltdl4euUvVNOS0U5/ooy/BXltFTuhJbmNpu7XrBCwSQlFV9uPt6cfMsLc+o5eHPy8eUV4M0tsL7LzkN8oafRnsQkdj71IAlF/UkeM5H6bnph+krif28k3kJnDnA88BdVrRSRYuDXce7TYZz3bPQYbd1HOaeQaixM4QBTQobshbEpkVt0axzmRl2ioc5FOTp9n0UMxUE3CgeEzY/z2MjLCtUulAA3XgTUTu6aSyyISJqq1opIuqrWOGR2NrBGVTcAG9rt/ww4LUT7GcBqVV0bHNMzwCmAK3Rcej2eoXOoX74EefUMfCnVtNRnoAMvImXKjQBoUwW68UXL0/PVdehX10PRYciQM2lMPZT/3v0y295fRF5zI5P6b6OsJp2C9EoGFFXQrzCZ1EASM5O2IJ/fTc3n0P6P1JORhTc7F19OHgn9B+PNycOXk4c3J4/yx+8j96wLSTvwcDwpaQC7vTDn/NTWObpemN5DXL0rqlqnqi+o6qrg522q+qZT9kUkW0SeF5HlIrJMRA4SkVwReUtEVgVfc4JtRUTuFpHVIrJYRKY4NQ5TVG1uRN/AWuvHaMNsC15dBzebnjEbD7Ct6xDtnDpdtwjXHMN70+kmRDuVvQgNFliwNisnJNRGTJs4tJmGb9nSA53G6JiY6Dx+um5mtLv+hv96uMREjoj8HDjUQZtnAk+H2P9D4D8h9g8ANrX7vDm4Ly5U3FHMJ5fNAqCmtIyKO4r5+JfWhG37qpVU3FHMh5efCMCG+fOouKOYD674NgAr33mLijuKef9Xll775rWXrM+/PguARXMfp+KOYt67+gcAzHv0fuvz7y4C4LP7/mK1v/5nAHz81xss+zdfAcBHf/4tFXcU89GffwvABzdfYY3vrzcA8P71P6PijmI+u+8vALz3u4uouKOYeY/eb32++gdU3FHMormPW+1/fRYVdxTzzWsvWZ9/dRoVdxSz8p23LPtXfJuKO4rZMH8eAB9efiIVdxSzfdVKa3y/PIaKO4qpKS0D4JPLZlFxR3Hbtfzsl4dT/pf+bZ+/+OUhlN2++9bN/+VMdty6u8zvwsunU3Lz7iUHF10xla03Dm37vPjKSWy+YVjb56W/nsDG60e0fV521TjW/2Fk2+eVVx/A2t/t3/Z51TWjWXXN6LbPa3+3PyuvPqDt8/o/jGTZVeOAYCWxmwZR/rvhbLrsHGo+fIvNNwxj8ZWT2tpvvXEoi66Y2va55ObBLLx8dyL/jlsHseyKyZS+vBw98DUqt2SzeukAdjy/hPLH76Py/4pZftUxVHxcR/k3R1BflkrV5iya1nyOfnEJCe9O4Nj+t/CdyQuZMXwDQ45ezrgjlzLr3Hkcee77jDr6TRKGrgUgMOt48g5dQ+mQbAY/8C8azruCrIkLWZvop/j6u9haPBRP2Y0s/Pg10g89mqphw5BF5zPvuh+iLS0svPXX+N8+kR1JTda9tfnbW/D2S6QPeZsds09h0F1PMP+Nue5vL8pvLx7EReiISNSqaiZtDLgLq6rbaGAisAy4GnhbVfcD3g5+BjgB2C+4XYxVFCEqxiLCYLM969Pomz0BYTiDj3ntoHDEdu6Rr2cIwdHN+V3MU799cc4Yj3NWJ80Gb3ZYIWYJNjxB4WawGQuICH2G2zTM1jZWo3GyW3x6DDaXWJkNnA8MF5HC7hoTkUTg28Bznfb/FmgBnuym/YtFZL6IzC8tLe2OKZd9mNZyyQ1+HyWN6eRfeLkVmiWBjg0FvBKgcc0K6hZ+js+jpHsb2PnkA5TedxuJHj+53loaqutY87srSfL6KfTW4N9Zyq4Xn8DnCZDnraHy389T8t57EPCwa0Munz99EF+8MIWW+gR8mQ0UHbqWAaduIiGzgZSBlfyv5FzWDHiF+qoU8oaU4RlcT+CAmQQQGrwp+Ar6gS9yOcyGfiPxq1BQvYF1Zx5F5voF+FWoSS2I34V1iTtxKS8tIvXAqkhNgCxVHRyhTbQ+soBFwHBtdxIisgI4UlW3BUPl3lPVUcFcofdU9enO7cL1MS63UJ87+oxYhxgC82ttpwS180XSYqxuFc2enbZRCdgrWR2uXYf9ATyGIUcR+43VpvFjB5slkQ3bGV93o9LN9spLh7PZ8aPf+LzxhncLdrFpFMAbMCwFDXj8hvfctLy0H/ERPlSuQ98Bwi0u2nlX0o8/cctLx4CIjAESgEGq+poD9k4Bfqaqx7bbdz7wY2C2qnZZ2lxEDgKuV9Xjgp+vAVDVWyL15ZaX3vfozqKVgaZGAtVVBGqq2Panq8iYdRK+3HwC1bvw76qkaeNaGlYsIXHAEPzVu/BXVaIN9aGNebx4M7PwZGbTtHEtKyqy8QQU/IlUtsDWhnROGb6Ox3dMoWlzPfkJXhI9QlNAKU+CgUeN4fvXn09WXjbqb4StbxBY9xS6+VUE2Lkjk+ULR7JuWT8OnryeIbNrSJizzLkL6dLr2dPlpUdHb4I/epOIDANKgUdEZCKwALgMKGonXkqA1hIb4Vz9YYUOtHpinMNoskJrqFfPPHU1F06mDXvx0+P2Q4t64q2No6S4t/tSEMPTV2PvnHTqI6JVxeg22f6VOy6uQ9vUyF9HMBT+Atm65WGPNG9nLoodaBcU9XGqEO8CqGrr7GmxQybPol3YWrCa2lXAEaFETpB5wH4iMgyriMGZwPcdGo9LD9MdcdLZzs6nHiT/4itJGDSM+q/mUf7oPTSuWU7CoGFBEbMLf3W1JV5qqghUVwVfd6FNjR3sVT77cNt7SUrGk5GFNtTjycwmYeDQNiHjbbd5soKvqelI8AnQFyfOZktFOr4TZ7OrLoHVr3zOgZk1VDckkV/aTFOCh6osL2NPncG3f3kGSakpHcYh3iQY9G28g76N/6l0mrIvJL3meQ4+7ksOOsaDP/0QPHXLUDVdE9BlbyYuQieYUBlvfMAU4FJV/VxE7mJ3mFrrOFTaspLNEJGLsULbKE7NsDmk6F2Z6hcxVUTGmF8G5zWWWOE3hm07TvgjDCTyfLZL06g7o9pqPaAXC7dQGIodZ23auEbGa7+oceGADv9vi2DX3CuI4Rht2LRx3mYL2RIMSzOx6dJdROQPqnpDp325qrrTho00rMppP263+29AEvBWcJL2mar+RET6Y5WRPjFYke3nwBtY5aX/oapLu3lKLt3AaXFScMnVbWum7Pj7LQTq60gZP5VAbTX+2hoCtTUEaquDm/XZ3+lz89ZN4PFQcuOVHfrY9cozuz94vXjTM/FkZOFJz8RX2I/E4fvjzcjCk55hvWZkUv7Y38n53g9InTITT3omnuSUtkUri3//f1HPy+8PsPrLDSx45xsCJQVM7V/CBy9+gDancXBWLeMHbOabkn6MvvJYjjzvZHxJiWYXLGs0yVO/i5z4V7Tya3TVP5C1jwNK4PXpyMgfIsPOQhJzbNwFl72JeFddiyebgc2q+nnw8/NYQme7iBS3C13bEfx+CzCo3fEDg/s6oKoPAg8CjMspUnv5KoYeAYOJjfMRhfaeh9tz1hgM1vg6drYV5jgRWxP4kCPstFPEplfF0YZxZA95X3odpmGNxvYMQzU9hoJMCOb+GPZtgrtg6J5kVjAE+gVVba1PmyciJ6vqP00MqGotkNdp38gwbbcCJ7b7/DrwekwjdwHiK05K770V9ftJnXowgfpaAnW1aPA1UF9nbXW17b6zPtct/AxfQRFlD91pfV9bjTbUU3b/7eEH4PHiSUtv27xpGfhyC2jevJ6sk07Hk5Fp7c/IwpOaRsnNv2bQfc/hTc9EUlLNvB5+v5WTUzzQKpe8ZEHEcsmBQIB1X29l0Qcr+OS/i1j3+VryPX76JUNBUhbrSuHIYVvJSGqkJauAuilns/1v8znj4lNtXfsupaoHn4Ju+Q8Uz4aKxeiCX6OL/oAM+R4y8keQN9318uxj9Fmho6olIrJJREYF1yOYjVVa8xvgPODW4OvLwUNeAX4eLMN5ILArUn5ODCNyzpQtz0EvDx+L5yTbSdtxGGc8/i112tEXz3/ue/z2RBHCPa7/4pAfaRqm2Md8kr2VFuBPwP0i8ibWGjivY/1/x0jo7Es4JSqcstVenCSNnkD94nmUPfgX/JU7SZkwjUBDPYH6OrSxgUBDPdpQb702Bl8bGgg01KENDdQt+hxfYTHlj95jfVdfh7+2mtK7b4w+EBEkJRVPciqe1DS0oR5vTj7e1HQkJRVvegaSkkrlc49ScOnvOogZ630GkpwScvK+6bJzSJ12MCnjd1dBq1+ygISBQ0koLO7SPhLphx3D0s/WsPWaa8lPqKGsOR054rsMDl53VWXDsm0s+mAlC979hkXvLyelsYniFChM9jMs10qwrE+Bhlo/7+0sZNht1zHksP1Z8slq/vbD+xjqabI1JrBKVQeAwPwroWoFZI5CJv0Rz9A51rh2LkJX/wNd/yy69gnIHo/s9yNk6BlIQqbt/lz6Hn1W6AS5FHgyWLVmLXAB1rPUuSLyI6z1COYE276O9TRsNVAXbOsg8Qhr6iuhUmHGGe+ZpBMhWQ6PMV4PirpldndqkbM2oxgwvj1RohNjxiAhP2oHbd9H/huM7/NBNb+YSkRvUjyeEezDLMIKOavGWsPmB8A/6Pv/X20j3h4PoIM9DQTQ5ma0pQltboZm67X9vrovP6Xqf6+Sdfyp+AqLadqwmrKH7qRu/sckDBiMNjUSaGxEm4JbYyOBpka0qQFtbESbmtCmRpp3bEUSkyi5+dcdclHKH7k76vlIYiKSnIonKRlJTrHESWY2npRUJDkFT0oqnuQUdr36LHk/vMz6nJpmHZOaZm0paXhSU5GklLbcFbDESc73ftBFnNR++h4ZRx5v67rnnHYepffe2uW6x7Jo5Ttz53H331awwVfPkvULGD9kBoMWLuOwtY9TX9PAl+8tp6GilqJkKEhu4Yh0ITnLSwCFQZnsf/x0ZsyZRfbgQh699i6an/uKBy55iHVb6hg2IJURnir6nz4p+kBC4Bk6B4bOCfmd5E5CZtyNTr4ZXT8XXf0QOu+X6MLfIkPmWKInd3JM/br0DRyvuhanxdR6hHE5RTp39pmGre2EwJg2NLPZcXLd/fvZWqrWnGgCR+1VSOsyoFDtull1LeQk2LRKWdfrE34cplXXAiEnqKFzi2Kw2c5QV5vxqLrmN6+6JkGbEcdo2TSrkKaIN2BgD6tCmmkFO69p6Jph1TWxUXUtwfT++LtMs8MdlvjDz9yqa91ARIqA41X1sXb7coHXVPWgnhtZeOxUXav58C3Kn3yAtGmH4CvoR/PWTdR++g4p46eSMGAI6vdDSwvqt7bd79vtb2kBfwsNy5fgK+qPJykZDYqXQF0N/qpKPKnpwX1N4O9ujSLA50MSk/AkJiFJyZYo6fA5CUlMovaj/5Fx3HfxJFv7PMmpSEIi5Y/cReGVN+JJTsGTkoIkpeBJTkGSk602ScmIt+M/GpsuO4f8Cy/vIk7KHrqTQXc9YWv44URhrItNOiVWvzfyCgKNqziqaARS3UBtQFhWoexqhoKUFgqSmumXlIxHhJZEyJk8mOmnz2LkUZNITE/uYu/Ra+9i478WkK3JVEoDg783lfP/dJntcdlFVaF8Abr6YXTDc+Cvh9wpyMgfIUNPRze/hi69fbd3aOxVbd4hl97Nnqy6liMiF2B5Tv4bB/u9lJ726PSk1ycYDNPjsUA9aNNh9tHTBhwap2lOmAKBqK2spu3EizNj7PQaiYBhp96O9vrKPe+LqOp2EXm8076dIhIhmaLvUPH8YxRccjUl13ecfNZ++p6lur0+xOdDvD7wene/D75a772I14c2NuDNzEZ8CUhCApKQCF4vtR++Rfohs4P7EsCXiCcxERISEF9iW1tJSAgem0jJTVdSfOPf8CSl7BYuXi8bL/4uw+a+Z/VrwKYNa0g/+KiQYV3pBx9l61o56TlpFSFlD93ZJk5iFTmt9mI5trqilmXz1rP087V88/la0irrGJs1gE/WNiA+P8VJDUzJTcErHsAHBRmMPHoSk757OEXjh3TwUoXi/D9dZgV+7mFEBPKnIfnT0Cm3oOuesUTPFz9DF/wKxIdMuRUZfjaUfkLgs0sIgCt2+jDxEDqti6n9Q0QKVXVHlPa9HIcFhL0icAbYs+dsaJVpcYUY6AGbsUTCOR2qFpfT7iP3py8Ms9cLB6XDD7m3B732dVS1i0xW1Rd7YixO07xlAykHTGLwP161hIvPiypsOPc4hv/rI1u2Nl12Djmnn99FVDStX03+xVdGOLIrCQOHgt9P0ohRHWwlDBxqLHJg7xQnoXhn7jyevP0/bFxRwuBR/Tj7qhOYNWd6hzaBQICNK7bzzReWqFn6+Vo2Li+xvhQlO6OZmdledjU3MCMvkUSPj4AnDW9+BrVbd/HTj24lozjXkfHuSSQxGxn1E3T/H0PZZwTe+x746yzRs+5JPKMvRQ68B11wVdjQOJfeTzyEzhfAD7EWU+vbIqdb1YtCTzGcTiaH+ISu2Rlj9Il0rJWgup5Lx7LB9tY16dA8QjE3O4QbQay32Gl78bIZD2JbMyeCJY3u2JGAdPDURGiJqOG1VDH0EgkawVMjHd4ZVgRUQYgwUBcXQxIGDKFh2VchPR52cVJUOGWrN4sTp3hn7jz+8ceXufLecxl/8EiWfLKa/7vkcRrrmygYmNsmbJbNW0dNpbXQpy9ZSE6pJTutnMIEH0NTckjzJgHQQir9DhvDjLOOoFJ93PqTRzjcJ31S5LRHRKDgIGipRr6zGtY/i668n8CHZ0HaUKjdgDZXIwl2lxxx6Q04LnTisJhaD6LYXIYnqj27mIgI55/YKxJy9mWaP2OnWRQxE+E4MW4bZgAhcomM6ZL/Ee7Y7v1+Qp6eXZOdXFWOhV1FNGSjF5WQnoiuFmwIiBB/t+F+0eZ6OdKvuJ2RALbEU7j7qe3aEQj9Fxl2LL1Nxbr0OXqrx8NpW71NnDjJk7f/h0mn9uf8i86ndF0VQ/JGUZQ0hL9cEswbEkjL89GSuJOE5BL6JSYwIiWfnIR0SBuINzuZwYccwMgjJ/L2Lc/w3qZvyPk0i0eee5C8gRlUN31NQv+xPXuSTpI5Cqlajoz5BTrqEtj8bwJLbgaUwEv7IyPOQ0ZdgqQN7umRutggrtVhRGSoqq6PZx/xpqeFTkw2oz3FNrAZOSk/hpl2LMUIIrQPK3KieLecEYWdFj81rtxl0CzW8UU6Tpyc98ruqxphYVfpuisioWyGWlHJsDxHyGJp4XysZvVYJErn7foMmC6/pYa5Nx7zUtR+sUbSHRHv4kLv9njs7QIlVpoam1n/zVZWLdrE6q82sX7ZNprWb+aMzIlkDINqPyysKsEnWdQnfEVxYhL7efrRLzEb8jPwpCYw4MBRjDhiAgMPHk3W4IK2stXi8cCNT/JS9ae8V/cFR8kMvjNgCrOvPquHz9o5Oq/JQ1IOtNTB+N8jVcvQFfeiK/6ODPoOMurnSMGBPT1kFwPiXQbzBWBK+x0iMlNVP4tzv47hvNAxfy5rSsTJe6gZn5FRp6vxxcnz1B2PTucmwfA6s0phjnUbW2PT/uPxZD/kmq7d7MjoTyOa2NhtTAPSdkhki+Zeomjhl21D8whiZNNjGNKp4De94UGR1aW56+JxsY8rKHoGk7yauuoG1izZzOqvNrUTNlvxt1j/+KSkJ9I/xc+4XGG+lLK+ZDVjUws5JHso3hxFZCKS4KXf1BEMO3wcgw4aTf7ogWGLCOx/stV/9v25nKJjyRlezLSfnNC2f28g5Jo8E6/bvSbPpJvRlfejqx9BN75gLT46+lJk0CmIWUlQlx7A8fLSACIyB0vgfA/4NrCiNWlTRBar6gTHO40D43IL9YXjTnfQYgzX2uDRuO3JbFQRo4YrB5vnyHSrvHQoJJrXKbTNyNFWgZiEU+SwPNNx2jgfG+WlzWzaKS/dLiwqosfNRnlpdPdvMqLNgFWO2cCedd4GxTLsXEuDUtAC4PGbX/fO5xPSfgCPz/RvzW9VXotqE1J//oFbXnofw055aZeeIVRezZ9//BizzphBelYqq77ayOqvNrFldSmt87es/HRyB6XhT66jpGoD69d/TWp9M2cUHUpLwEd6guAJhlXUqgf89Zzz9DX0mzgMb6I7QbeLNtega59AV9wLNWsgdRAy6ifIiPORxOyeHt4+y54sLw3wMZAMXAjcAYwSkUpgK1Afpz4dRwTE03tLO1sPwZ2Pxzf3vtjJaYnxGkUah5qfu3GomZFHJ0q/nUSQuSAzt9krCOGF6ZBAb1AMwGoZNTmni/XoAwu2j3aIaRnqVm9SFM+TgpVPY2i2SzGCMJGb6jfM0Wn9sfWaH4mLi4spjfVN/OOGVygcm8pPzvoVDTv95CT2w+tP4um/vAFA4aBcCoZkkDmskO01m/hm/SJWb9rKsKoihqcUckTGAE7KOQxysIRQv0y271LWbasldUgRE04agj77GQOm79fDZ9t3kYR0q1rbfhfB1v8SWP43dOFv0SW3IMPPtfJ4MoYTWD/XXZOnFxAXoaOqW4B/isgaVf0YQETygKHA8nj02bO0zipMvRF2bIe32fZg3fakJhbR0R0xF65wQBibNjwLToZmdduW8fF2wwjtDsQu4ToINU4J3UQ6fmxrbXCqyu6wwajtopvDPMTNTtvwuTxdx2QzHC4M7f2QYiga2xp1Gqure1xc4otJuFkrddUNbFxRwvpl29iwfBsbV5SwYfk2StaXo6p4S5RTMgeQMQQafF4+LN9AbfVA6scu542vl9B/cxbDU4oYlTmQQxKm4R1i/YWn9cum/9SR9Js8guLJw3n+x3/l2W3vc/1Dt3PooYfw0Ucfc/2FV3Fm8aF78tLstYjHCwNPwjvwJHTnInT539DVD6Er74fcyVC3FTn4YaTwEHdNnh4krj7LVpETfF8OlMezv54n6uPjbth00mtknta9xwoo9HWc9oAZ24wHPTTOTqKpV9s0zeWKSBh1GKpLO47beFTZc3FxCUu4Ms71NY0MHt3PEjPLLTGzYXkJpVsq2o5NSPQxcL8i9ps0iAmzh/LVUx8zNt/HooIy3ln+OUMbsvhuwYFUJzWTWjOM7w8aDYB4PRSMHUzx5OEUTx5Bv8nDSe+X02FcR1/zfbhRueVnf+DdFV9w1KgZnJF/8F5VQKC3ILmTkIMfQifdiK56AP3mDlA/uvC3MOaXyOBT8cy818r/cYXOHsUNznQUpyfwPSUyJMz7WGyFat19m3HJsddY8p2camxWbS4+2LmP7e6iSb6KHeJx3nGw6ZwXcXcOUTST5jluLi4ue5L6mgYeueEV+k9K58fn/JKqHfUUpPcn3ZPHHZc+2dYuOTWRwaP6MfGw/cgdkE5zQi1ltdtYvWk5877+mMfnriBXUvn5wJMorfEzLJDG1fkn4wsWIknxKiOOmGh5a6YMp3DcEHzJiRHHti8UEOhtSGoxMvF6/Ev/gky7E115H/rJ+eiSm5Axl8GuvTCoqZfTp4WOiHiB+cAWVT1ZRIYBzwB5wALgXFVtEpEk4J/AVCyv0hkmZa8V86quwREZjFnthdVEoPXBrdqaqJqN0bjkrlHujTVKszQdg1Ai2Z2fZHrmUc861klkPL0QnelNE90It0navemxIRsUN7AwdZWoUXgdAB4F48ISQeth7Eqwb3OC59ObfisuLr0Uk3Azvz9A2dZKtq0rs7b1pcHXMratL6eytBoAT0kp38kcQsYQqPd4mb9rB+Xk8qM/H8/O+hLWbF7JkiXv8a9Xl1BZtpPixBwGJucxOncwp6dPInPkDDx+q8/MRKGOVDZXNSN52QyeNQReX8RJ911i+xz3P3m6K2x6gqzRSNYo5MT5sPkVAkv/jH5xKYiPwIr7rTV5fCk9Pcp9gj4tdIDLgGVAZvDzbcCdqvqMiNwP/Ai4L/haoaojReTMYLszolpXbCQrm6Ao5onKHQcSiVjGGN6mqukYjRMHMJ/1RjjXLsfbTU43sRkj8RA8rfTGSWuI8+32MB27hnEMjQyZKKQRP0YyZiaegsLJ5LpI+La98Wfk4tJTtA83Gz52AB++spC/XzWXz/6zhLSsFLatK2Pr+jK2byinpdnfdpzH66FoUA7FQ/M55OSJFA/N57Xb5zK5Xwq5p49ns+xk42fLmbgilcVN1Vx46fcZmJTHsPQixhcO47gB3yI5V9qexSRmpFAwZhD5YwZScMBg3rn1GeaWfsJ1bl5Nn6bDmjwDT0YSc9CPL4DELHTBlejS26zS1PtdiCRkRjfoEjNxKS+9JxCRgcBjwM3AFcC3gFKgn6q2iMhBwPWqepyIvBF8/6mI+IASoECjnHzPlpc2L2xgLpxslG6OaNTubyZaeelYym7beMJubD9YZtmof7O+ZG8tLx01bM1OeemAkQckVHnp0GM2K1fd2rfHqGS1WXlpa0x+Y5tdSkGHxI/4TH+XwXtu4D5NudQtL72vsbeUlzZN/G9qbGZnSRVlWysp31ZJ2bZdwfe7+PjVRXiToLqyHo92/EPMyEmleGg+xcPy214LB+XgT2igrGo7a9etYeXKVaxcuYpVq1bzA5nJ4goPi+s/Jz2hhYn5YxnhKSbHp3jb/SOcVphF/gGDKRgziIIDBlEwZhAZA/M6/P925b/n8b8bn+Sl6i/b8mq+kzGFo39/tuuZ6WOEqromQ06HHR8RWHo7lLwDCdnIqJ9aW1JeTw+5T7Ony0vvCf4KXAVkBD/nAZWq2hL8vBkYEHw/ANgEEBRBu4Lty6J1YqoDTSaJ5p4ScMRb0aWdU890O9sxG0P4a9nenr1y2cZVuFptR2plfHMi2Ynt2tiiNzyb6FJezQGbRiLCxFC735BBHpGTi87GhOF5mwkdN3TNpXdipypZNDsPX/8SF910KkWDclnw7nLuufJZ3n/xSzJyUtuETNm2SqrKa7scn5DoIz0kAsUAACAASURBVK84i4a6JvJ9lRw1ooCExibITOW/25dQXzaSSx87iVWrVrFy5QrmLXqNlXNXsXbtWlpaWkiSBAoTsxiWXcyowiEc2u9Icnd6mdVPOFqPAoL/PGYkQ3U9B135XQoOsDw2qXnRn9y7eTV7D56hc0IXHig6DG/RYWj5Aiuk7etb0OV3W96d0ZciKcV7frB7MX1S6IjIycAOVV0gIkc6bPti4GKA/qnpxseZCiIn5YY9zCb7ijVXsjeXNqs21/PJ1HaqzbkYEeGexhyhGYcKaXuUHv+du7g4g5PiJFRVMg0oM44bS9XOWmsrr6Wqonb35501bfurg/t3bK5AA8qN5z7UoY+PXllEXr8s8oqzKBqcy9iZw8krziavOIv84GtuUSZ1zdVs3ryZu751H1Pzsiid6GFlzU6qVy7jUO8Qvk6u5pijjyPbl8ag9ELG9h/BqbnTyS+YRXI9aE1zW5/S4iErq4DK2jJWNGxl1nnfYvqxh7CifCM3/vy3nFl8KFMvPs729XLzavYNJG8q3sOfQSuXokv/gi6/B23N3xnzSyR9SE8Pca+gT4auicgtwLlAC9bCpJnAi8BxOBy69q9jnQxdw/kEbePFPcFkkt+a5G9m1Nyb5PwipGoeZgYGZa2s0CiMbJp7ncQ4fGzvCV2zvjIN37L6j5aDIsF2xiFhrecdMckfzMdpHrqGx/z+RAtda72W5qFrfsumQeOUn7mha/sadkLXwomT8377LWaeMI762kYaapuCr43U1zZSX9O6r6Htu/qaRt566jNGThxEUmoi1RV1VFfUsrOkitqq8OuHiwjpOalk5qZZW471+tbTn1ORtpbvn3c60w+ezKbt6/njn65ncPmhPLvhRjZt2sSmTZu7vG7cuIktW7bQ0mIFffx+6Bks3+VhjS6lf2Emw1IHkbsrlSyvn8TkRLRpd15OYkYKOcP7kTO8iJzh/cgeZr1mDSrAm+hzw81cHEGr16Df3IGuexJUkaFnIGN/hWTu7y4+asBeFbqmqtcA1wAEPTq/UtWzReQ54DSsymvnAS8HD3kl+PnT4PfvRBM5eyedQsRs051LFmrmZbAgZSRMEsMj4T55j50Q1z5U0J6tS2xg0zbxsGnUqVk7AbNiBEbtsNfOxSUCT97+Hy6/52zuvvyZNiFTV93ArRc9amzD4/WQkp5E7a561q7YRHlFKTX1VaRkJjJp6niWf1DPT289zRIyeZaQyQgKmvTsVLxeD01NTZSVlVFaWkppaRn/nvs/jpowEt97C1n8yjyqfc2M0n6UBiooKNgd8uPFQ0FKFvsXD2NYbjEHDRtG7v4ZpPkT8NUHaC6rpbBAOBxLiGgdkJ0EtQ1MOOuIoLCxtpS8jIihzW64mYsTSMYI5MC/o+OvRZf9FV39CLruKcibBrWb8RzyMBQc7C4+apM+KXQi8BvgGRG5CVgIPBzc/zDwuIisBnYCZ/bQ+HqYWIXK3rI+UBB3Ith9nKy21tdsurjsA2xcUcLyLQtZsflrKnftJCs3g5mzp7Pkzc389LbTSU5LJCUtieS0JFLSkkhJTyI5tfU1kZT0JBISfYgIp+13JU1NSzl34gSatqfjyUvh34s/IDl3FLWZW1i/rYzSxaWUlpZSVlbeJmpKS0upqqrqMK5ZWTMpWDeGZ0q/pCmriSnpozkqeTgb8so5e+LlJDUK1DTTXFm3+38LVdaWWpBMxoBcMvvnsfrdRSyoWct3Lj2bGUcfytLNq7jhkms5s/hQDrvW/uTRDTdzcQpJHYBM/TM69tfo8r9bi48SILDsLjzeNKToCHfxURv0eaGjqu8B7wXfrwVmhGjTADgcg9YXMcvTCX9cZ2IVLE5WdLNpM0Kznsuf6oO0OhkczqeJRx7XPnVP96mTdYknWf1SePZ3j3HemAk078jHk5fCa5+/S0ruGNJGNFNdvZPt1dXUbKuhurqGmpoaqqurg6/t31fTrzyb2Tn78/8Wvs2XVV8zIW0Mc4pm8Fb5Ys4//0EAUhKTGVI4gAG5hQzPKGDGiP3IPiCNDG8KKSSQ2OLB0xigZn0ZHo+Xc4qDESoBwAP7peWR3ZRExoBcMvrnkd4/h4z+eWT2zyVjQB7p/bLxJia0nd+wf89DbnySvz3wAO9e8SOOGjWDM/IPZvbVZ/XA1XZx6YokFyKT/oj/m/9Dxv8OXXkfgTePgAEnIeOutsLYXKLS54WOi11MF/jcS4nnejf7GuL82qYaQW3GZLO1sEa4dWX2xt+Bq9hdHED8qzksaTgPLHiLxbXL2omTRZxwwv1d2ickJJCVkUlOeha56Vlkp2YwMCWXzOJBDK71sCvXw/TADGakTicj3UdKfhIneUZx9uRDaN7VQHNtg2WoIbiVArTgTawnNT+BlNw0UvqlU79hJ/NbNnDS6d9m3EGTWFu6mWtu/iMXJxzCuW/daHx+briZS58hazRSeDAy+ufoivussLY3DoOEDHTXCiRrVE+PsFfjCp19ju7m6ewluIKn+zi9aGg8FrmMZrOv/AnYuRDub9rFAfYPJDPyB8dwyCMeDqqbSVq6j6SiZI6T/Tj/2OOgKYA2tRBoaKGlronmukb8jcGKZC20hYsBkGC9H5CoSLKQkpuKP1Fo8HgZMHkkKbkZpOZlkJKXQUpuBil5mdbn3AwS0pI65Mc8dfINzDp4In986n6W3b6MMWPGcNWFl+D7pNT+ObrhZi59gPaLj8oBl0P2AeinF4O/kcDr05ChZyLjr0XSh/X0UHslrtDZJ4k2uwv3SLiHc2uctNmXJ4O9ZXIuHV7iYbrX2wxJT98f16Pj4gBFSdlkHpjF6CcDqA8SUr1oYws+rxVGlpiRSkJaMolpSSSmp5CQlkRiWrK1Lz25w/sXL7mHV0vnc8Vff88Rxx7Jx598yvUXXsWZxYdy3B0X2hrXtJ+cwGd3vsx/H3qW4qkj2bZgNe/89nGmXX5KnK6Ei0vP4hk6hwBYOTmtVdem/xXpdxS67E505QPo+rnIiB8gY3+DpA3s6SH3Klyhs0/R3RlYPLxB8bQZwV77r9xJYbfoZu28joakD9js7eyVJ+Wyp0koSOOGn1zD7++5mcNmHc4nn+4WJ2e8cK0tW0f/7my4Ef78m5s58TundCsfptUD88FNz1KxZhs5I4qZefkprmfGZa8m3OKjMvlP6KhL0W/+gq5+GF37BDLyR1ZZ6pR+PTDS3ocrdFxiJB6Lbzpt07D4QjwS6/cFnA7/6wtuHBNvid0+XQ+MSy9k9tVnoTcGuP1XN3JCcG2Y7ooTp/Jh3JAzF5fdSGoxMu3/0DGXoV/fhq56EF3zKLL/T5ADLkeS8np6iD2KK3T2KeIhTnoQJyeHfWmi2VvGGmUcvf329JbLGB2bf7eucHJxAFecuLj0LSRtsLUOzwFXoEv+ZBUtWPUQMvrnyOhLkcQsgH1u8VFX6OxBFBB1QGq0T/62bS+6l0Olj8yTnJjQ9YkT7aVEWYxT7ZaLDuMh6tYtiofNPY6a/9b3oucYezsiMgp4tt2u4cAfgC3A9cAYYIaqzg9z/OXAhVh3fQlwQXApBcdwxYmLS99DMkYgBz+MHnAlgSV/Qr++BV15PzLmMjS5CL6+Dc/Me/eZxUc9PT2A3o84uDmE7t5UO36OuJmeV5e2RgZjP4mesOnwLdnn6HT9Ql5Ou9fXxKZd2hlx5C+xt7uWRENuEmJz6VlUdYWqTlLVScBUoA54EfgaOBX4INyxIjIA+AUwTVXHAV722YWwXVxcQiHZB+A97Ak8x38M+TPRr66HL36O9D8G8mYgnoS2xUd16e09Pdy44Qodlwg4IT56oU1X4HSfdjrSscvZmitFOJvmij7kxD7U5sF8az+oPfA8IybiUaLbZU8wG1ijqhtUdZmqmqwE6ANSRMQHpAJb4zpCFxeXPonkTsJ75PN4jn0X1I+u+n8EXh1PYPWjaKDF8uzsxYuPuqFrUdB45Nv3eqTTazhiuTg9aDNKMze1wZx4FG7oM8UgnPbAmLaz0W9fuZQubZwJPG3aWFW3iMhfgI1APfCmqr4Zr8G5uLj0fSR/BmSNQUach258Ef3iZ+iKvyFDz4CM/Xt6eHHD9ei47DFUzbb4DYDOD/5dYqTLfaP7l7WznT1ym8RG7KcoeKKHhInHfEMw8CaprehY2cORtC7dQ0QSgW8Dz9k4Jgc4BRgG9AfSROScMG0vFpH5IjK/tNT+opouLi57DzL2KnTF/ciEPyCH/BOadlkhbYDuXNizg4sTrtDZl7CTy2PUVjptBnZjHKZLO3rTBQlOmuOR/xK7PRsXKBBTB5F76sn74wqYvsgJwJequt3GMUcD61S1VFWbgReAg0M1VNUHVXWaqk4rKChwYLguLi59Fc/QOcjE69AFv0I/OR8SMmHYOdBYRuC/hxL4+AK0ZkNPD9NR+mzomogMAv4JFGFNLR5U1btEJBerks1QYD0wR1UrRESAu4ATsZI+z1fVL3ti7M4Sj5lNtCCucDO5cMdot8PCOvcY3ZbBbLN9E3eCGBMdL1uMM3yJHrbWFkxpdJ/EOCTMidu+R35GxoZ7kwp2MeQsbIStBdkIzBSRVKzQtdlAyOpsLi4uLu0JtfioNleh39yBLr8H3fSStQbPuKuQxJweGqVz9GWPTgtwpaoeAMwEfiYiBwBXA2+r6n7A28HPYD012y+4XQzct+eHbB6+Zcf5sufpC7EvNn0M7S6qUXid4bb3TTs7hmd1TO4ntq2VSIUA4/WTc9hmr7jfvf1P06UNEUkDjsHyyLTu+66IbAYOAl4TkTeC+/uLyOsAqvo58DzwJVZpaQ/w4B4evouLy16CJGTimXg9nm8tRoaegS6/h8Ar4wksuwv1N/b08LpFnxU6qrqt1SOjqtXAMmAAVtzyY8FmjwHfCb4/BfinWnwGZItIcfSeYp29dd1UbbQ3CQUzFU0hNw27OT9bszPzMjv3NjHYrWvQSby4mGNwvWzPt/eWe2B64oJhjhChc4FC5gd1sh1pc+lxVLVWVfNUdVe7fS+q6kBVTVLVIlU9Lrh/q6qe2K7ddao6WlXHqeq5qtq3ZyMuLi49jqQOwDPzfjwnfAp509CF1xL492QC659FtZux3j1EnxU67RGRocBk4HOgSFW3Bb8qwQptA0sEbWp32Obgvs622hI3dzbW9/BE2umM4ii+oLg6ahx8vO/0IONx3vG8lr3hif0e9K7EdimDv/Mo68qELSgQpjy1aTujrfXvMMLPXAR7a96oDQ+bi4uLi4tLCCRnPN6jXsIz61VIzEI/+SGBNw5Ht7/f1iawfi7+16bhfzoD/2vTCKyf24MjDk+fzdFpRUTSgX8Bv1TVKmkXxK+qKjZXxlPVBwmGAIzLLdzLHnu2XhsNvbvdDmNhZjhhEszFnnGZYTXvP3RH3Th2T9rsjRhce9u3p9MBve32xPPWRrUd8mLuZf88ubi4uLj0KqTfLDzHf4yuexpdfAOBt0+E/sdD4aGw6iE8M++11uEp/YTAZ5cQIJgD1Ivo0x4dEUnAEjlPqmprjPP21pC04OuO4P4twKB2hw8M7tujOOkhij3cKlSY3O7NPAel67GhN3rXnKzbT7QlfK5UqC8Mr2eseUBGIX6dx9ld4qhC+pqDLXaCXiCTGxnSK0SILbz3qovnycXFxcXFJQoiHjzDz8Zz8iJk0g1Q+gks+h1kjYLM/RFPAlJ0BJ6Z96JLb+/p4XahzwqdYBW1h4FlqnpHu69eAc4Lvj8PeLnd/h+IxUxgV7sQt3C9oGpniyZMghN/h/N+nBlbd8VTHyHCbFdthdft/iyR2hrfb+Nh2kfD9dL72ONeHDsdtsunkUibcTjc7jFIlC3kOEOJHw9t4ql1CyucXFxcXFxcDBFfCp4DrsTzrSXWjpJ3CLwygcDim9DmGsuzU7WiZwcZgr4cunYIcC6wREQWBfddC9wKzBWRHwEbgFYf2utYpaVXY5WXvsDZ4exdEwfTs4nHxNRW2Jxh27ZJZRxuUziT3bk2TttUDX9wTDZbBxj2YBsXup13IsIwLZtGj2Y6ioh2LyH6bvfbMEHaRhL+a2N7Hc87fJdWkQEjs9KHVK2Li4uLS59DkvMhawxywK9gy+vo17egax5Dhp8NGfv39PC60GeFjqp+RPj/nc8O0V6Bn9nrBBvzNZOZhVoP+B2cbIuYCgMxntCpms6T1PBUxPrPUfUUdVbcgbDXqMPxap5HFOm7OEwy4xHK1TuMdKX9LYitC+34ViLYDJiKp84j60gHm90QGxK2jwg/zPb9uJ4aFxcXF5c4I2OvQr/6o5Wjs99F6Bc/R5f+GTJGoOVfInlTenqIbfRZobPnMJ2tmEww7E3OTWyqRhIwHY93vBgAxirL3nkbXkpH6P6suqvJdjadEj0dhml3LhtiDJ1N2B7mHvIYxHZ7gk8TwhzQwaap0fBRhl1tEr5d56PE0ENlfPJRxuni4uLi4tJdPEPnEAAC86+0wtUy9ocRF8CWfxN44zBk+LnIxOuRlH49PVRX6ERCsZOzYubRMW1pYtPSDpG8KqGOd/iJb6SZYttXVvaLo0Kr9Um9oSgyydNwcm4YD69OzEQVmTYm0jZ+P+FMhrs2EUPWbKHgiXxMW18e7IXDmfzcTcPh7IiScOfT+djWPB0Dky4uLi4uLrHiGToHOlVY0+Y/oV/fiq64F934EjLuN8ioSxBvUg+N0hU6BsQyZYgcJ2U/4T/8ASpiHGbWfgzR2xq2i3Qubd8JaiMXwiwST4KWTQx2stj5IN394pijKGizVwieHoh7k6B4Ms0riSYiWm3avp6Oi9gIf4ttXUb5BbfPHzJ0z1kFBgxseuyE4rm4uLi4uDiHJGQik/+EjriAwJfXoIt+h65+BM/U26D/8UgPTIr+P3v3HR9VmTVw/HdSQDpKAOnI0osgolRBUBBZEF1ABV3EggUruy7K2lZXWVB2eRHRRQFB8QV9UaoIoqiAIlKUDoISCJBAaNIJZM77x52MSUi5SWYyJef7+YxyZ+595kwymTPnPs99Hit0cqHqsoxQcFNMiKsv/HkYWBSAK/dz+UqVsdVgfJHP85fXTF89s/gx+Momlwv/qosvk2m9WC7fQr9/53XTa+AngRiyJpn+7w95r29y76Vyhpi5LZ5y7yVK36bbXhp30zznYZY0m4zAGGNMkEnZekRfOxPd9zmetU/j+aYvVLmeqJajkHINCzUWK3Rykbfel9yLCbcTB2Q6Kvs9C211zWxaLcxrn9PCV2fD43FbaGVfuoXkxAGZflV+aS+LhiTzPu5HX2Ypq3dt3nobc2vT7Zstu0Iji6Gjri94ysPaM257VdRd8QSp7osXsR4dY4wxoUGqdiPq0s7ozxPQDSPwLGiN1H8AafZ3pFj5QonBCp2cKO5Px/vkdDo+H9ca5NLmhYWGq+nFXD5v7vJfKORl+uH8PkcOTYZigZOpEb+FmFOB4//m89eAmxjz0lOR6W8t28NEvW+G3IabeadgzMu1N67adLFfHtt0fX2QMcYYE2ASFYs0fAStfSu6/p/O9TvxHyLNX0Dq3IVEReOJ/8hZbPTYNijbAGkyzLkGyA+s0MmFX3ss0k5xu55VLP23kawP+n234Ewrm/+Rc9l908rii1qBazdnwdT07WYdt7h8PZrxe7Tba1HcNe1r02+877tAfLcNlzZzln6avBx2c10wuh38mbFwyrG9zL+/zDv7rtHJsSE3T2aMMcb4nVxUCbl6HFr3XjxrhqE/PIpufweq9oD4Gc5U1RXbQfJ3eL4fggf8UuxYoVOo8vDt4oIv3Fkfq5LLhAD54HZ6g3QH5C4PI+cyFyXZPqnr152XWcXyxt89Q4E4G+/XGMXtJAN5WOSSLOr6rLga5uW0k5dhZu6neHbZWxLlvudH8nA9jytuhq5ZkWOMMSZI5JIWRF2/CN39Cfrj32HTSKh0DZS+DImKhcqdiGrzpjN1tRU6gefva1DcTwmQlQvPPP9e5+T27SUfM1a55Y/RcpmbzNRj4ocm/djm75MbZPf+kPT7ur0uS70LluYWWx4Dztxmls3ktc38H5pFIBdeQJ/dJTbu3sPpZpTIrU0PebqmxdU0IZLbDmn3u5xkQPh9v1yLQdy3aYwxxgSBiCC1+qDVbsTzUSU4tBrP/CuQRn9BGg91enaObfPLc1mhkwNFXM+65vai+DwN9crpTv39Hy4j9B7iIgCVgl3QnBZQuhjzc/jv8WT5TydGt01nfj2aRZiSh7V+AlCI+Y7OrffLk4+Z3C58lgIL5HflrH8E7nt0snrhWbbptvcFkCx6VbLpZ3XXS5Q2zMzFkLgMQ9dyjFdxPeubMcYYE0QSUxLKNUSaPgUJ89FNryK1+sCZ/VC2gV+ewwqdXLgpdCQPX5BdPqvr7yl5f1oXLedlOFxWzWXz5dpfP6K890xl93U0016uJ57I/pqOAvd05NBeINoM5e/D6QvzHOv+nCrj7I7N6cEs78t6MoKs3tNZDkfLqpdHsp517cJRq3phkZVFgQR4Z3zLtZvRGGOMCQnSZBj60z+ca3Qufw5O78Xz/RCk+Qt+ab9IFToi0h0YC0QDE1V1ZI4HqLtCR92eQA36F40CdScVYE/vgqEunz633ZxrePJ2jY6b51bXBWu6HXOoGpQ8FsEuel80qzsLIK2MyHWRy2yPdVtG5sDF2i9Ob4yL60/SmnQ71Ety6X2RPO4HTozRaRtZFCi+/bxTVuf05hQAD0R5sh8Sl77gE8+FhY7bYs4YY4wpZFG1b8UDzjU5x7ahZRsgzV+wWdfySkSigfFAV2APsEpE5qrq5pyOU4+7bwSuhoW57ooQ767uviy6XkvG7fPn8qUzQ6tuOohE8tRJ5E5e2pTcvpU7D+U3wJx+Bnlt0811KHn9kprLUDjx7eSCeAuOXGPIwzVhUdn0glzw3G6nTs7Yq5HjIdHuiieJwik2cttPgKjU7IuiTIUO0alZx5jhDg8S47nwtWe1He3J/o3s5tohY4wxppBF1b4Vf0w8kJUiU+gAVwM7VPVXABGZAfQGsi10VAVPan4uVsk0dCbt0gvF5QxPoLl8O/W16foLZc77pX9I87BavJv91PcfNzyuzpy7LUAhU+9PTnGIoLl/l80QR3Zt+q7/EfeTEYj3V57b/qJu23T3fVbxuP/eG4gVYt3O5BblsqiX3Ht0fHdHuXu/IYpEZ/PmSCv+0sSmazOneCXVKbRyK0DkPMRm91im7ejU7D/V0+2rQZqO3hhjjClMRanQqQYkpNveA7TO7aDz56Nz2yVLWX0hU82pMMh6uIlkcV/m4wpSlEhW7UoWZ4+zlM0X5CxOT7v/WhXlnIzP5fkFdX1BvqYVERmOz2I/yePE2rkOtYILF0DJvjGNUlczYefpS6rkcI1Lxmd331sibgqObNrL6T2cW5datCfdkLAc2hRFolPdvGiISUVy+hP3FToeX6Hj+5vJqtdVgGI5tJmhqDnv/QTOVJRd8HpSobiimQuyrHpeo1Iz/oyy6511O121McYYE8aKUqHjiojcD9zv3TzR7qsR/pnfzr/igIPBDqKAwv01hHv8EP6vIdzjh+C+hlpBel4TJGvWrDkoIrvS3RVuf0PhFi+EX8wWb2BZvIGTZU4rSoXOXqBGuu3q3vsyUNW3gbcLK6j8EJHVqtoq2HEURLi/hnCPH8L/NYR7/BAZr8GED1WtmH473N5/4RYvhF/MFm9gWbyFryCrpYSbVUA9EblMRIoBtwNzgxyTMcYYY4wxJgCKTI+Oqp4XkUeARTij2Cer6qYgh2WMMcYYY4wJgCJT6ACo6gJgQbDj8IOQHlrnUri/hnCPH8L/NYR7/BAZr8GEr3B7/4VbvBB+MVu8gWXxFjLRQEwXa4wxxhhjjDFBVJSu0THGGGOMMcYUEVbohDARqSEiX4nIZhHZJCKPe++/REQWi8h27/8vDnasuRGRaBH5UUTme7cvE5GVIrJDRD70ThARskSkvIjMFJGtIrJFRNqG0+9BRIZ630MbRWS6iFwU6r8DEZksIgdEZGO6+7L8mYvjde9rWS8iLYMXuS/WrOJ/zfseWi8is0SkfLrHhnvj3yYiNwQnalNUiEh373tth4g8Hex4MgvX/BdOuS7c8lo45LFwy1tFIU9ZoRPazgN/VdXGQBvgYRFpDDwNfKmq9YAvvduh7nFgS7rtUcAYVa0LHAHuDUpU7o0FFqpqQ6A5zmsJi9+DiFQDHgNaqWpTnMk4bif0fwdTgO6Z7svuZ34jUM97ux94q5BizMkULox/MdBUVS8HfgaGA3j/rm8HmniPeVMkx6VMjck373trPM7fTWOgv/c9GErCNf+FU64Lm7wWRnlsCuGVt6YQ4XnKCp0QpqqJqrrW++/jOB9C1YDewFTvblOBm4MToTsiUh34IzDRuy1AF2Cmd5eQfg0iUg7oCEwCUNUUVT1KeP0eYoASIhIDlAQSCfHfgaouBQ5nuju7n3lv4D11fA+UF5EqhRNp1rKKX1U/V9Xz3s3vcdbzAif+Gap6VlV3AjuAqwstWFPUXA3sUNVfVTUFmIHzHgwZ4Zj/winXhWleC/k8Fm55qyjkKSt0woSI1AauAFYClVU10ftQElA5SGG59T/AMMDj3a4AHE33h7QHJ4GFqsuAZOBd75CEiSJSijD5PajqXmA0sBsnMfwGrCG8fgdpsvuZVwMS0u0XDq/nHuAz77/DMX4TvsLq/RZG+S+ccl1Y5bUwz2PhnLfCPk9ZoRMGRKQ08DHwhKoeS/+YOtPmhezUeSLSEzigqmuCHUsBxAAtgbdU9QrgJJm680P59+AdD9wbJ7FVBUpxYVd12Anln3luROQZnKE5HwQ7FmNCWbjkvzDMdWGV1yIlj4XSzzQ3kZKnrNAJcSISi/Mh/4GqfuK9e39a96b3/weCFZ8L7YGbRCQeZ3hEF5xxweW93c/gdIvuDU54ruwB9qjqSu/2TJwEES6/h+uBnaqarKrngE9wfi/h9DtIk93P5o7YAAAAIABJREFUfC9QI91+Ift6RGQQ0BO4Q3+f3z9s4jcRISzeb2GW/8It14VbXgvnPBZ2eSuS8pQVOiHMO753ErBFVf+T7qG5wF3ef98FzCns2NxS1eGqWl1Va+NcxLZEVe8AvgL6encL9deQBCSISAPvXdcBmwmf38NuoI2IlPS+p9LiD5vfQTrZ/cznAgO9s9i0AX5LN1QgZIhId5yhLTep6ql0D80FbheR4iJyGc7FqT8EI0ZTJKwC6nlnrCqG89k8N8gxZRBu+S/ccl0Y5rVwzmNhlbciLk+pqt1C9AZ0wOniXA/85L31wBn3+yWwHfgCuCTYsbp8PdcC873/roPzB7ID+D+geLDjyyX2FsBq7+9iNnBxOP0egBeBrcBG4H2geKj/DoDpOGOxz+Gcfbw3u585IDizSP0CbMCZmScU49+BM8Y57e/5v+n2f8Yb/zbgxmDHb7fIvnlzyc/e99wzwY4ni/jCNv+FS64Lt7wWDnks3PJWUchT4g3cGGOMMcYYYyKGDV0zxhhjjDHGRBwrdIwxxhhjjDERxwodY4wxxhhjTMSxQscYY4wxxhgTcazQMcYYY4wxxkQcK3SMMcYYY4wxEccKHWOMMcYYY0zEsULHGD8TkcYiMkhEaohImWDHY4wxxuSX5TQTzqzQMcb/YoFHgVuAE5kfFJHaInJaRH7y9xOLSAkR+UlEUkQkzt/tG2OMKXIsp5mwZYWOMf5XA3gX2AFkd/brF1Vt4e8nVtXT3nb3+bttY4wxRZLlNBO2rNAxJp9EZIn3TNNPInJGRG4FUNX5wExVXaCqx1y0U1tEtorIFBH5WUQ+EJHrReRbEdkuIlfnZT9jjDEmryynmUhkhY4x+aSqXbxnmiYAc4GP0z2WlMfm6gL/Bhp6bwOADsCTwN/zsZ8xxhjjmuU0E4ligh2AMeFMRAYCNwJ9VDW1AE3tVNUN3jY3AV+qqorIBqB2PvYzxhhj8sRymok0VugYk08i0g+4A+itqucK2NzZdP/2pNv2kPHv1O1+xhhjjGuW00wksjeRMfkgIj2BIUBPVT0T7HiMMcaY/LKcZiKVXaNjTP5MBaoD33ov3Lw32AEZY4wx+WQ5zUQkUdVgx2BMkSIitYH5qto0gM8RD7RS1YOBeg5jjDHGcpoJZdajY0zhSwXKBXJxNZwF3jz+bt8YY4zJxHKaCVnWo2OMMcYYY4yJONajY4wxxhhjjIk4VugYY4wxxhhjIo4VOsYYY4wxxpiIY4WOMcYYY4wxJuJYoWOMMcYYY4yJOFboGGOMMcYYYyKOFTrGGGOMMcaYiGOFjjHGGGOMMSbiWKFjjDHGGGOMiThW6BhjjDHGGGMijhU6xhhjjDHGmIhjhY4xxhhjjDEm4lihY4wxxhhjjIk4VugYY4wxxhhjIo4VOsYYY4wxxpiIY4WOMcYYY4wxJuJYoWOMMcYYY4yJOFboGGOMMcYYYyKOFTrGGGOMMcaYiGOFjjHGGGOMMSbiWKFjjDHGGGOMiThW6BhjjDHGGGMijhU6xhhjjDHGmIhjhY4xxhhjjDEm4lihY4wxxhhjjIk4VugYY4wxxhhjIo4VOsYYY4wxxpiIY4WOMcYYY4wxJuJYoWOMMcYYY4yJOFboGGOMMcYYYyKOFTrGGGOMMcaYiBMT7ADcEJESwEKgi6qmZvH4aGCBqi4p9OCMCYA1a9ZUiomJmQg0xU5IGP/yABvPnz9/35VXXnkg2MEURdnlNBGZAsxX1ZkiMgN4TlW3BylMY/zGcpoJoBxzWlgUOsA9wCdZFTle44B3ACt0TESIiYmZeOmllzaqWLHikaioKA12PCZyeDweSU5ObpyUlDQRuCnY8RRRueU0gLeAYcDgwgnJmMCxnGYCJbecFi5V9R3AHAAReUpENojIOhEZCaCqu4AKInJpMIM0xo+aVqxY8ZglBONvUVFRWrFixd9wzqya4LgDmCOON0Rkm4h8AVRKt88y4HoRCZcTksbkxHKaCYjcclrIFzoiUgyoo6rxInIj0BtorarNgVfT7boWaB+MGI0JgChLCCZQvO+tkP/8j0TpcxpwC9AAaAwMBNql7aeqHmAH0DwIYRrjb5bTTMDklNPCIdHFAUe9/74eeFdVTwGo6uF0+x0AqhZybMYYY0xepM9pHYHpqpqqqvu4cPi15TVjjCmAcCh0TgMXudjvIu++xhhjTKhym9PA8poxxhRIyBc6qnoEiBaRi4DFwN0iUhJARC5Jt2t9YGMQQjQmYvXr16/2JZdc0rxevXpNAtVOdHT0lQ0bNmxct27dJg0aNGj8wgsvVE5Nzeka7fCS0+ubP39+mTJlyrRo2LBh44YNGzZu165dfYC//OUvVUuUKHHF3r17fddnlCxZ8oq0f+/evTumZ8+edWrUqNG0SZMmjTp16lR3/fr1xQHWr19fvFOnTnVr1arVtHHjxo169OhRJyEhwa7zCBGZctpS4DYRiRaRKkDnTLtbXjPGjyynFVy45bSQL3S8Pgc6qOpCYC6wWkR+Ap4EEJFYoC6wOnghGhN57rnnnoNz587NdXrb+fPnl+nTp0/t/LRTvHhxz9atWzfv2LFj05IlS35evHhxuSeffDJihuvk9vpatWp1YuvWrZu3bt26+bvvvvs57f7y5cuff/nllytnbs/j8XDTTTfV7dix4/GEhISNmzZt2jJy5Mi9+/btiz116pT06tWr3gMPPJC8a9eujZs3b94yZMiQ5KSkJCt0QsvnQAdgFrAd2Ay8B6xI20FEKgOnVTUpKBEaE4EspxVcuOW0cCl0xgN3AajqSFVtrKotVPXv3sd7AjNV9XzQIjQmAt14440nKlasWOC/K7ftVKtW7fzEiRPj33333Uoej6egTxty8vL6+vfvf2ju3LmX7N+/Pzr9/fPnzy8TExOjw4YNS067r23btqe7d+9+4u23376kZcuWJwYMGPBb2mM9e/Y8ftVVV53x+4sxBTEeuEsdj6hqA1Xtqqo9VHWmd58BwIQgxmhMxLGc5l/hkNPC4iyfqq4Vka9EJDqbdQdigH8XdlzGFIZ77rmnxsaNG0v6s82mTZuemjx5coI/2/SXxo0bp6SmprJ3796YGjVq+PXkxdVXX93gzjvvPPjYY48dOnv2rFxzzTX1Bw0alDxkyJDDx48fj7ruuuvqDR48+MDgwYOPHDp0KPrGG2+s+/DDD++/6667jiYmJsb07t37D0888UTSgAEDftu9e3dMzZo18xxf+tcHsHr16tINGzZsDNC7d+/Do0aNSgIoXbp0av/+/Q+OHDmy8pgxY/alHb9+/foSzZs3P5VV2xs3bizRsmXLLB8zocNFTgNnwoL3CzMuYwqD5TT/sZyWu7AodABUdXIOj/1fYcZijHFcfvnlDVNSUqJOnToV9dtvv8Wkfbi98sore/r06XMs2PGFg1atWp346quvdmT12NNPP32gefPmjZ9//nkbvhRhcspp3sffLaxYjDEOy2kFF2o5LWwKHWOKqlA9SwWwfv36reB0Pb/77rsVPv744/iCtrl58+Zi0dHRVKtWze9DUX/44Ydtaf8uXry4pt8uU6aMJ/12hQoVUtNvV6lS5Xz67fyc+YKMr2/dunU57hsXF5d6yy23HH7ttdd8C0k2a9bs9OzZsy/Oav8mTZqcWbp0aen8xGWMMYXBcpr/WE7LXbhco2OMKQL27dsXM3jw4Fp33333gaioyPt4ys/re+aZZ/ZPnTq1YmpqqgD06tXreEpKiowePToubZ+VK1eWWLhwYenBgwcfWrNmTekZM2aUS3vss88+K71q1Sq30xkbY4zxE8tpFyrsnBZ5P3VjjN/06tXrsg4dOjTcuXNn8cqVK18+ZsyYuNyPyls7Z8+ejUqbqrJz5871r7vuumOjR4/el1N74aSgr69KlSrnb7zxxiMpKSkCEBUVxdy5c39ZsmRJ2Ro1ajStW7duk6eeeqpatWrVzpUuXVrnzJmzY/z48ZVq1arV9A9/+EOT8ePHV7r00kttohZjTJFnOa3gwi2niarm53UaYwJo3bp18c2bNz8Y7DhM5Fq3bl1c8+bNawc7DmNM5LOcZgItu5xmPTrGGGOMMcaYiGOFjjHGGGOMMSbiWKFjjDHGGGOMiThW6BgTmjwej0eCHYSJTN73VuQt022MCVWW00zA5JTTrNAxJjRtTE5OLmeJwfibx+OR5OTkcsDGYMdijCkyLKeZgMgtp9mCocaEoPPnz9+XlJQ0MSkpqSl2QsL4lwfYeP78+fuCHYgxpmiwnGYCKMecZtNLG2OMMcYYYyKOVdXGGGOMMcaYiGOFjjHGGGOMMSbiWKFjjDHGGGOMiThW6BhjjDHGGGMijhU6xhhjjDHGmIhjhY4xxhhjjDEm4lihY4wxxhhjjIk4VugYY4wxxhhjIo4VOsYYY4wxxpiIY4WOMcYYY4wxJuLEBDuAUBYXF6e1a9cOdhjGGON3a9asOaiqFYMdhyk8ltOMMZEqu5xmhU4WRKQX0Ktu3bqsXr062OEYY4zficiuYMdgCoflNGNMpMsup9nQtSyo6jxVvb9cuXLBDsUYY4wpEMtpxpiiygodY4wxJoKJSC8Refu3334LdijGGFOorNAxxpgwc+LECVasWIGqBjsUEwasR8cYEygrV67k/fff5/z588EOJUtW6BhjTIjbsmULw4cP59ChQwBMmzaNdu3akZCQEOTITDiwHh1jjD8tX76c1NRUAL744gvuuusuRASARYsW8cknn/geDzYrdLJgScEYU5g8Hg+//PILR48eBWDNmjU0adKElStXArBnzx5Gjx7N9u3bAejRowdz587lkksuCVrMJnxYj44xxl++/fZbOnbsyKxZswB47LHH+Pnnn4mOjgZg/PjxPPfcc8EMMQMrdLJgScEYE0gnTpxgzJgxvhmwtm7dSt26dZk3bx4AFStWpG7dukRFOR/R1157LSdPnqRNmzYA1KxZk169elG6dOngvABjjDFFUrt27Xj99dfp0aMHAGXKlKFu3bq+xz/55BMWL15MdHQ0KSkp9O7dmx9++CFY4VqhY4wxgeLxeABISUmhT58+TJo0CYDo6GiefPJJvvjiCwDq1avHO++8wzXXXAM4hcycOXO46qqrAIiNjaVYsWJBeAUmEtgoBWNMQU2YMIH9+/cjIjzyyCOULFkyy/1iYmKoWrUqALt27WLt2rUcPny4MEPNGE8gGhURN+MpPKp6NBDPb4wxhe3UqVMcPHiQmjVrAtC2bVsuv/xyJkyYQLFixTh8+DAnT54EoESJEhw4cIAKFSoATiFz3333BS12k7Nwz2mqOg+Y16pVq8HBjsUYE352797N0KFDSUhI4OWXX3Z9XL169di+fTsXXXQRAFOmTKFkyZLceuutgQr1AoFaMHSf9yY57BMN1AzQ8xtjTEBt2rSJhIQEunfvDsB1111H8eLF+frrrwHo3r27r+gB+OqrrzIcn1bkmLBgOc0YU2TVrFmTH374gYYNG+b52LQiR1WZOnUqxYsXp1+/fr7JCwItUIXOFlW9IqcdROTHAD23Mcb43ZIlS1i+fDnPP/88ACNHjuTLL79k3759ADzzzDPExsb69n/hhReCEqcJCMtpxpgiZ8qUKZQrV45bbrmFpk2bFqgtEWHx4sUcO3YMEeHQoUN89dVX9O3b10/RZi1Q1+i09dM+QWHjmY0x3377LYMGDeLcuXOAM53mv//9b06fPg3A888/z/Lly31r2fTs2ZMbbrghaPGagLKcZowpUlJTU5k4cSITJ07025ptMTExvtlCX3/9dfr378+vv/7ql7azE5BCR1XP+GOfYCnIrGvnzp3jxRdfZMWKFQCcPXuWSZMmsWXLFt/2okWL2Lt3L+BcpLx582bSElBqairHjh0L2YWXjIlUW7Zs4e677/atTbNv3z4WLlzIrl27AHjyySc5fPgwJUqUAJyxx3Xq1Cm07ncTPEU5p6mqb9pzY0zk83g8nD17lujoaBYsWMDMmTMDkueee+45vv76a+rUqQM4s48Ggt8LHRHpKiLviEgL7/b9/n6OUHbq1Cn+8Y9/+AqdY8eOcd999/Hll18CcPDgQbp3786nn34KwN69e2nSpIlvPvIdO3ZQrlw5PvroI8D58lW5cmXf/tu3b6d79+6+9TXi4+N5+umn2bFjBwD79+/nww8/JDk5GYDjx4/z888/c+ZMyOZgY4IiKSmJBx54gO+++w5wTlLMnTvX97f0pz/9icTERN+0mSVLlvStE2CKjqKe0/r370/37t39dkbXGBO6VJV+/fpx55134vF4KFu2rO/knr/FxMTQvn17ANauXUuTJk18M5P6UyB6dO4B/gbcKSJdgBYBeI6QVa5cOVJTU3n88ccBuOSSS9i1axd//vOfAYiLi+Pbb7+lV69egLNexowZM+jUqZPv8dGjR9OyZUsASpUqxZ/+9CeqV68OwJkzZzh69Khv2trdu3czZswYXw/RTz/9xO233+5bWPCbb76hQYMGbNy4EYBPP/2U6tWr+3qYVqxYweDBg0lKSgLg119/ZdasWZw6dcr3fFYkmUhw9uxZHn30UT788EMASpcuzccff+z7W2nWrBnJycl07twZcKaAtt4aQxHPaTfddBODBg2yvwVjIljaiQwRoV27dnTq1KlQ/+abNWvGyJEjA3O9jqr69Qa8ne7fI4FV/n6OwrpdeeWVGi48Ho+qqp44cUI3bdqkJ0+eVFXVhIQEnTZtmh4+fFhVVX/44Qe95557NCkpSVVVP/zwQ61SpYru3btXVVXHjx+vgO/xsWPHKqDJycmqqvr+++9r586d9fjx46qqunbtWp0xY4aeP38+QxzGhIJnn31WX3vtNd92kyZN9KWXXvJtp6amBiOskACs1hD4nA31m+W03y1atEiffvppX34xxoS/+Ph4bd68uS5fvjzYoRRIdjktED06n6Yrop4G3gvAc5hM0irvUqVK0bhxY99CTtWrV+eOO+7g4osvBuCqq65i0qRJVK5cGYBbb72Vffv2+RZ3GjBgAD/++CNxcXGAswLuiBEjfMeDcx1RqVKlAJg+fTp33XWXbwX3p556imrVqqV9KeCjjz7KMOf6nj17SExMDNjPwRRty5Yt44033vBtb9iwgW3btmXYfu6553zbae9bY3IQ9jnNX5MRfPHFF8yZM4fixYsDztDp1NRUf4RojCkkqsoPP/zAt99+C0ClSpWIjY31TbQTaSTtC2lAGhdpBTwD1MKZyloAVdXLA/akftSqVStdvXp1sMMIaceOHSMxMZEGDRoAMGfOHFatWuUrboYMGcKSJUt8F5n179+fVatW+a6DeO655zh27Bhjx44FYOfOnZQvXz5DYWVMds6fP8/3339Phw4dABg6dCgffPABe/bsoVixYqiqDbnJhoisUdVWwY4jnFhOg9OnT1OiRAk8Hg916tShffv2fPDBB4Azzr5+/fqULl3aH+EaY/woJSXFlxcbN25MlSpVWLJkSbDD8pvsclqgC51tOGObNwCetPtVdVfAnjT7WOrgJKhyqupqEKAVOv6R/svmt99+S3JyMjfffDMAf/3rXzl48CBTp04FoEOHDsTExPgWXRw5ciTVqlXzXeOU9odqiq7U1FRUlZiYGCZMmMCDDz7Ixo0badKkCYcPH6ZkyZK+BcpM9qzQybtQymn54c+clpqayieffEKFChXo0qULp06dokyZMjz77LO8+OKLnD17lqFDh3LnnXfSrl07UlNTOXz4MHFxcXbywZhC9sorrzB58mR+/vlnoqOjWbduHbVr1yY/MzGGquxyWqDHbSSr6lxV3amqu9JueW1ERCaLyAER2Zjp/u4isk1EdojI0zm1oaq/quq9eX1uU3Dpk1r79u19RQ7Av//9b1+RA87aJMOHD/dtz5w5M8OK8g0aNODhhx/2bb/zzjtYMVp0bNu2jerVqzN//nzAmRlt5syZvukpL7nkEityTCD5JadFgujoaPr160eXLl1827Nnz+b2228HnBlAp0+f7uu937lzJ5UqVeK995yRf3v37mXw4MGsW7cOcGYs3blzp2/dKmNM/iUlJfHCCy9w7NgxAFq0aMGf/vQn3/C05s2bR1SRk5NAFzoviMhEEekvIn9Ku+WjnSlA9/R3iEg0MB64EWgM9BeRxiLSTETmZ7pVKvArMYWiW7duGRZdXL16NRMnTgScnqH777+frl27As50wA899BBz5swBnDOM7du3903Nraq+2elMeEpNTWXo0KG+KSfr1KlD165dfdeYVaxYkT59+gRs+ktjMvFXTiswEakjIpNEZGYwnj+z4sWL06tXLxo1agRAzZo1OXLkCHfeeSfgzEg6duxY2rVrB0BiYiLz58/n8OHDAKxcuZI6deqwdOlSwJlBdNCgQb7FBI8dO8bevXvtMz0Izp49y8GDB33bBw8e9M3UCr/P2GWCL+13sXv3bv75z3/yzTffAPDHP/6R1157rUgOKw10oXM3zlSc3YFe3lvPvDaiqkuBw5nuvhrY4e2pSQFmAL1VdYOq9sx0O1Cwl2GCKe2CcRFh+PDhvh6h2NhYkpOTeeKJJwB8w5ZiYmIASEhI4JJLLmH27NnAhR/WJjStWbOGjz/+GHDOEq9atco3BXRsbCzvvfcebduG7CL0JrL5JacVpVEKaZ/fFStW5LHHHqNevXoAtGrVisTERN907g0aNGDy5Mk0b94ccBbs/fLLL32FzezZs6levbqvh+jzzz/nz3/+M0eOHAGcNegWL17s6xGyL9/5N2vWLB577DHf9kMPPUSzZs1828OGDeOqq67ybd9zzz2+JTHAWfH+pZde8m3Hx8f71vYzgZGamkrfvn19k+1cffXVJCQk+JYyKcpiAtz+VaraIEBtVwMS0m3vAVpnt7OIVABeAa4QkeGq+q9s9rsfuB+cM1ImtKWftKBixYosXrzYt+3xeLjtttt8Cz4uW7aMrl278vXXX9OpUyeSkpKIj4/nyiuvJDY2ttBjN1kbPXo0S5cu5ZZbbiEqKoqlS5fa7GjGL0SkZU6Pq+raXJrwV06bArxBuhnc0o1S6IqTz1aJyFwgGsicr+6JtBN4VatW5e677/Zt9+jRg4SE31N827ZtefPNN6lVqxbg9AgtW7bMNwPchx9+yLPPPsvp06eJjY3ln//8J6+99hpHjx4lOjqaSZMmMW/ePGbNmoWIsHjxYrZs2eL7Qv/TTz+RnJzsGzGQmJhISkqK7/lSU1OJioqKyOuLZs+ezejRo1myZAnFihVj06ZNfPrpp4wePZpixYoxcOBA34QvAIMGDaJbt26+7euuu4769ev7tjds2MCuXb+P6Lzvvvs4deqUb3HmYcOGUb58ef7+978DzsmtuLg438/auJd2DXR0dDRxcXEZhqNVq1YtiJGFkKzmnPbXDXgXaOyntmoDG9Nt9wUmptv+M/CGP+MPp3V0TO527typr776qh49elRVf18zKD4+XlVVV61apdOmTdMzZ84EM8wiZ9WqVdq6dWvfWk7x8fG+dZ9M4FAE19EBvvLeVgDngNXAGu+/V7g4PpA5rS2wKN32cGC4i3Zmun3OSM5pSUlJGdYBWbRokT711FO+7bFjx2rHjh192w8++KDGxcX5tu+9916tWrWqb3vgwIFau3Zt3/Ztt92m9evXz/B4+vYeeOABvfXWW33bTzzxhA4ZMsS3/fTTT+uzzz7r237xxRd19OjRvu1Ro0bpxIkTfdtvvPGGfvTRR77t+fPn6+rVq3P7MbiyevVqvf7663Xnzp2qqjpv3jzt1KmTJiQkqKr/1xdbsmSJLly40Ld92223ZfjZ1KtXL8PP7t5779UJEyb4tnft2qUpKSl+jSkSbNiwQVu0aOH7DlPUZZfTsj1NKiLjROT17G4u66g2wE/ervj1IrJBRNa7PDY3e4Ea6bare+8rMH+tOWBCS+3atfnb3/7mO+PRt29fZs+e7eu5+9///V8GDx5MdHQ0AN988w1Lly5N+zJh/EhVOXXqFOBMIHD8+HH27NkDQK1atWx6cRMQqtpZVTsDiUBLVW2lqlcCV+AufwQyp2U1SiHbU7IiUkFE/ot3lEIO+90vIqtFZHUkDx+qXLky7du3921369aNkSNH+rYfe+wx3/UKAOPHj/dd/wPORDgLFizwbT/44IOMGTPGt923b98Mw7nat2+f4XrSWrVq8Yc//MG3HRUV5csl4EzOcODA751wa9asYcOGDb7tuXPnZpjqd9y4ccyc+fvlV0OGDOH113//6tWsWTNfjwjA+++/75vYQVVJTEwk7TtMYmIit912m+/6p5IlS5KYmOi7zqZnz558/fXXVK9e3Re7P3Xu3DnDz2rGjBmMHz/etz158mSGDRvmi/3nn39m//79gDMyo2HDhjz11FO+x0ePHs369f76swtfpUuXJjU11Ybk5yar6sf7xe4u7+1tYDnwqPe2FPhvdsdlaqNWVjc3x2bRVm0ynv2KAX4FLgOKAeuAJvlpO7tbJJ/9Mhc6d+6cbt++3bfdpUsXbdq0qW9779696vF4ghFaRPF4PNqlSxe96667MtxnChdFsEcn7QZscnNfFvsEMqfZKAXj4/F4MvSs7Nixw3fm3uPx6BNPPKEffPCBqqqmpKRoVFSUr8coJSVFAf3Xv/6lqqonT57UOnXq6LRp0wr5VRRcSkqKTpkyRb///ntVdfIwoOPGjVNV1ePHj+sjjzyiGzduDGaYhebo0aP69ttv+7b93fsWzrLLadleo6OqUwFE5CGgg6qe927/F1iWU/EkIm2B79VP026KyHTgWiBORPYAL6jqJBF5BFiEM4Z5sqpu8tPz9QJ6pV3bYYqGmJgY0v/O58yZw+7duwFnfHarVq3o3bs3b731VrBCDGtbtmyhUaNGiAjdunWjQoUKvscicdy7CWnrRWQiMM27fQeQ7Slif+e0bAR0lAKW08KKiGT4XEzfWyQiGXqbYmJi2LVrl2//V6O7AAAgAElEQVSNORHhrbfeonVr57LlkiVL8ssvvxRS5P4VGxvLXXfd5duuWrUqR48e9f1sNm/ezOTJk7n55ptp0qQJ8fHxLFiwgAEDBlC+fPlghR0wb731Fs899xwdO3akQYMGdv2qC7kuGOpdIK2tqh72bl+M84Gf7QWZIvIWzsQAPwMLgYWqmpTd/qHKFgw1aVJSUnj//ff5wx/+wLXXXsvhw4e54YYbGDVqlG8dCZO9d999l3v |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
these refs can go at the top under the paragraph where they are introduced
pybamm/solvers/processed_variable.py
Outdated
def interp_fun(t, z): | ||
out = interp.interp1d( | ||
space, entries_for_interp[:, 0], kind="linear", fill_value=np.nan | ||
)(z) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
interp.interp1d( space, entries_for_interp[:, 0], kind="linear", fill_value=np.nan)
should be outside the function so that it's not recomputed each time
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
thanks!
collectors in the limit of large electrical conductivity. Note that this | ||
formulation assumes uniform potential across the tabs. | ||
See :class:`pybamm.AlternativeEffectiveResistance2D` for the formulation that | ||
assumes a uniform current density at the tabs. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
maybe emphasize potential
and current density
in this docstring
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
good point
I got a bit confused by what EffectiveResistance did (for a while I thought it was a 0D model). I think it would be easier to understand if that model took an option dimensionality which specifies 1D behaviour vs 2D behaviour, instead of subclassing. This is more consistent with how we have been reformatting the submodels
Agreed, will change to this. Also, in this case these models will then work with simulation, so maybe best to leave base model alone
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks great, thanks!
:class:`pybamm.AlternativeEffectiveResistance2D` for the formulation that | ||
assumes a uniform *current density* at the tabs (in 1D the two formulations | ||
are equivalent). | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
missing "Parameters" section title here
Description
Updates effective current collector models and adds a notebook comparing pouch cell models. I've put in a little workaround for processing variables that depend on space only, but will fill this properly as a separate issue (#1006).
Fixes #997
Type of change
Please add a line in the relevant section of CHANGELOG.md to document the change (include PR #) - note reverse order of PR #s. If necessary, also add to the list of breaking changes.
Key checklist:
$ flake8
$ python run-tests.py --unit
$ cd docs
and then$ make clean; make html
You can run all three at once, using
$ python run-tests.py --quick
.Further checks: