Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add option to smooth radar mask #379

Merged
merged 11 commits into from
Jul 18, 2024
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
repos:
- repo: https://github.com/psf/black
rev: 24.3.0
rev: 24.4.2
hooks:
- id: black
language_version: python3
53 changes: 50 additions & 3 deletions pysteps/blending/steps.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ def forecast(
conditional=False,
probmatching_method="cdf",
mask_method="incremental",
smooth_radar_mask_range=0,
callback=None,
return_output=True,
seed=None,
Expand Down Expand Up @@ -210,6 +211,13 @@ def forecast(
'obs' = apply precip_thr to the most recently observed precipitation intensity
field, 'incremental' = iteratively buffer the mask with a certain rate
(currently it is 1 km/min), None=no masking.
smooth_radar_mask_range: int, Default is 0.
Method to smooth the transition between the radar-NWP-noise blend and the NWP-noise
blend near the edge of the radar domain (radar mask), where the radar data is either
not present anymore or is not reliable. If set to 0 (grid cells), this generates a normal forecast without smoothing. To create a smooth mask, this range
should be a positive value, representing a buffer band of a number of pixels
by which the mask is cropped and smoothed. The smooth radar mask removes
the hard edges between NWP and radar in the final blended product. Typically, a value between 50 and 100 km can be used. 80 km generally gives good results.
probmatching_method: {'cdf','mean',None}, optional
Method for matching the statistics of the forecast field with those of
the most recently observed one. 'cdf'=map the forecast CDF to the observed
Expand Down Expand Up @@ -1451,10 +1459,49 @@ def worker(j):
# forecast outside the radar domain. Therefore, fill these
# areas with the "..._mod_only" blended forecasts, consisting
# of the NWP and noise components.

nan_indices = np.isnan(R_f_new)
R_f_new[nan_indices] = R_f_new_mod_only[nan_indices]
nan_indices = np.isnan(R_pm_blended)
R_pm_blended[nan_indices] = R_pm_blended_mod_only[nan_indices]
if smooth_radar_mask_range != 0:
dnerini marked this conversation as resolved.
Show resolved Hide resolved
# Compute the smooth dilated mask
new_mask = blending.utils.compute_smooth_dilated_mask(
nan_indices,
max_padding_size_in_px=smooth_radar_mask_range,
)

# Ensure mask values are between 0 and 1
dnerini marked this conversation as resolved.
Show resolved Hide resolved
dnerini marked this conversation as resolved.
Show resolved Hide resolved
mask_model = np.clip(new_mask, 0, 1)
mask_radar = np.clip(1 - new_mask, 0, 1)

# Handle NaNs in R_f_new and R_f_new_mod_only by setting NaNs to 0 in the blending step
R_f_new_mod_only_no_nan = np.nan_to_num(
R_f_new_mod_only, nan=0
)
R_f_new_no_nan = np.nan_to_num(R_f_new, nan=0)

# Perform the blending of radar and model inside the radar domain using a weighted combination
R_f_new = np.nansum(
[
mask_model * R_f_new_mod_only_no_nan,
mask_radar * R_f_new_no_nan,
],
axis=0,
)

nan_indices = np.isnan(R_pm_blended)
R_pm_blended = np.nansum(
[
R_pm_blended * mask_radar,
R_pm_blended_mod_only * mask_model,
],
axis=0,
)
else:
R_f_new[nan_indices] = R_f_new_mod_only[nan_indices]
nan_indices = np.isnan(R_pm_blended)
R_pm_blended[nan_indices] = R_pm_blended_mod_only[
nan_indices
]

# Finally, fill the remaining nan values, if present, with
# the minimum value in the forecast
nan_indices = np.isnan(R_f_new)
Expand Down
97 changes: 97 additions & 0 deletions pysteps/blending/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
compute_store_nwp_motion
load_NWP
check_norain
compute_smooth_dilated_mask
"""

import datetime
Expand All @@ -35,6 +36,13 @@
except ImportError:
NETCDF4_IMPORTED = False

try:
import cv2

CV2_IMPORTED = True
except ImportError:
CV2_IMPORTED = False

Check warning on line 44 in pysteps/blending/utils.py

View check run for this annotation

Codecov / codecov/patch

pysteps/blending/utils.py#L43-L44

Added lines #L43 - L44 were not covered by tests


def stack_cascades(R_d, donorm=True):
"""Stack the given cascades into a larger array.
Expand Down Expand Up @@ -557,3 +565,92 @@
f"Rain fraction is: {str(rain_pixels.size / precip_arr.size)}, while minimum fraction is {str(norain_thr)}"
)
return norain


def compute_smooth_dilated_mask(
original_mask,
max_padding_size_in_px=0,
gaussian_kernel_size=9,
inverted=False,
non_linear_growth_kernel_sizes=False,
):
"""
Compute a smooth dilated mask using Gaussian blur and dilation with varying kernel sizes.

Parameters
----------
original_mask : array_like
Two-dimensional boolean array containing the input mask.
max_padding_size_in_px : int
The maximum size of the padding in pixels. Default is 100.
gaussian_kernel_size : int, optional
Size of the Gaussian kernel to use for blurring, this should be an uneven number. This option ensures
that the nan-fields are large enough to start the smoothing. Without it, the method will also be applied
to local nan-values in the radar domain. Default is 9, which is generally a recommended number to work
with.
inverted : bool, optional
Typically, the smoothed mask works from the outside of the radar domain inward, using the
max_padding_size_in_px. If set to True, it works from the edge of the radar domain outward
(generally not recommended). Default is False.
non_linear_growth_kernel_sizes : bool, optional
If True, use non-linear growth for kernel sizes. Default is False.

Returns
-------
final_mask : array_like
The smooth dilated mask normalized to the range [0,1].
"""
if not CV2_IMPORTED:
raise MissingOptionalDependency(

Check warning on line 604 in pysteps/blending/utils.py

View check run for this annotation

Codecov / codecov/patch

pysteps/blending/utils.py#L604

Added line #L604 was not covered by tests
"CV2 package is required to transform the mask into a smoot mask."
" Please install it using `pip install opencv-python`."
)

if max_padding_size_in_px < 0:
raise ValueError("max_padding_size_in_px must be greater than or equal to 0.")

Check warning on line 610 in pysteps/blending/utils.py

View check run for this annotation

Codecov / codecov/patch

pysteps/blending/utils.py#L610

Added line #L610 was not covered by tests

# Check if gaussian_kernel_size is an uneven number
assert gaussian_kernel_size % 2

# Convert the original mask to uint8 numpy array and invert if needed
array_2d = np.array(original_mask, dtype=np.uint8)
if inverted:
array_2d = np.bitwise_not(array_2d)

# Rescale the 2D array values to 0-255 (black or white)
rescaled_array = array_2d * 255

# Apply Gaussian blur to the rescaled array
blurred_image = cv2.GaussianBlur(
rescaled_array, (gaussian_kernel_size, gaussian_kernel_size), 0
)

# Apply binary threshold to negate the blurring effect
_, binary_image = cv2.threshold(blurred_image, 128, 255, cv2.THRESH_BINARY)

# Define kernel sizes
if non_linear_growth_kernel_sizes:
lin_space = np.linspace(0, np.sqrt(max_padding_size_in_px), 10)
non_lin_space = np.power(lin_space, 2)
kernel_sizes = list(set(non_lin_space.astype(np.uint8)))
else:
kernel_sizes = np.linspace(0, max_padding_size_in_px, 10, dtype=np.uint8)

# Process each kernel size
final_mask = np.zeros_like(binary_image, dtype=np.float64)
for kernel_size in kernel_sizes:
if kernel_size == 0:
dilated_image = binary_image
else:
kernel = cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)
)
dilated_image = cv2.dilate(binary_image, kernel)

# Convert the dilated image to a binary array
_, binary_array = cv2.threshold(dilated_image, 128, 1, cv2.THRESH_BINARY)
final_mask += binary_array

final_mask = final_mask / final_mask.max()

return final_mask
1 change: 0 additions & 1 deletion pysteps/nowcasts/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@

from pysteps import extrapolation


try:
import dask

Expand Down
53 changes: 32 additions & 21 deletions pysteps/tests/test_blending_steps.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,31 +8,39 @@


steps_arg_values = [
(1, 3, 4, 8, None, None, False, "spn", True, 4, False, False),
(1, 3, 4, 8, "obs", None, False, "spn", True, 4, False, False),
(1, 3, 4, 8, "incremental", None, False, "spn", True, 4, False, False),
(1, 3, 4, 8, None, "mean", False, "spn", True, 4, False, False),
(1, 3, 4, 8, None, "cdf", False, "spn", True, 4, False, False),
(1, 3, 4, 8, "incremental", "cdf", False, "spn", True, 4, False, False),
(1, 3, 4, 6, "incremental", "cdf", False, "bps", True, 4, False, False),
(1, 3, 4, 6, "incremental", "cdf", False, "bps", False, 4, False, False),
(1, 3, 4, 9, "incremental", "cdf", False, "spn", True, 4, False, False),
(2, 3, 10, 8, "incremental", "cdf", False, "spn", True, 10, False, False),
(5, 3, 5, 8, "incremental", "cdf", False, "spn", True, 5, False, False),
(1, 10, 1, 8, "incremental", "cdf", False, "spn", True, 1, False, False),
(2, 3, 2, 8, "incremental", "cdf", True, "spn", True, 2, False, False),
(1, 3, 6, 8, None, None, False, "spn", True, 6, False, False),
(1, 3, 4, 8, None, None, False, "spn", True, 4, False, False, 0),
(1, 3, 4, 8, "obs", None, False, "spn", True, 4, False, False, 0),
(1, 3, 4, 8, "incremental", None, False, "spn", True, 4, False, False, 0),
(1, 3, 4, 8, None, "mean", False, "spn", True, 4, False, False, 0),
(1, 3, 4, 8, None, "cdf", False, "spn", True, 4, False, False, 0),
(1, 3, 4, 8, "incremental", "cdf", False, "spn", True, 4, False, False, 0),
(1, 3, 4, 6, "incremental", "cdf", False, "bps", True, 4, False, False, 0),
(1, 3, 4, 6, "incremental", "cdf", False, "bps", False, 4, False, False, 0),
(1, 3, 4, 9, "incremental", "cdf", False, "spn", True, 4, False, False, 0),
(2, 3, 10, 8, "incremental", "cdf", False, "spn", True, 10, False, False, 0),
(5, 3, 5, 8, "incremental", "cdf", False, "spn", True, 5, False, False, 0),
(1, 10, 1, 8, "incremental", "cdf", False, "spn", True, 1, False, False, 0),
(2, 3, 2, 8, "incremental", "cdf", True, "spn", True, 2, False, False, 0),
(1, 3, 6, 8, None, None, False, "spn", True, 6, False, False, 0),
# Test the case where the radar image contains no rain.
(1, 3, 6, 8, None, None, False, "spn", True, 6, True, False),
(5, 3, 5, 6, "incremental", "cdf", False, "spn", False, 5, True, False),
(1, 3, 6, 8, None, None, False, "spn", True, 6, True, False, 0),
(5, 3, 5, 6, "incremental", "cdf", False, "spn", False, 5, True, False, 0),
# Test the case where the NWP fields contain no rain.
(1, 3, 6, 8, None, None, False, "spn", True, 6, False, True),
(5, 3, 5, 6, "incremental", "cdf", False, "spn", False, 5, False, True),
(1, 3, 6, 8, None, None, False, "spn", True, 6, False, True, 0),
(5, 3, 5, 6, "incremental", "cdf", False, "spn", False, 5, False, True, 0),
# Test the case where both the radar image and the NWP fields contain no rain.
(1, 3, 6, 8, None, None, False, "spn", True, 6, True, True),
(5, 3, 5, 6, "incremental", "cdf", False, "spn", False, 5, True, True),
(5, 3, 5, 6, "obs", "mean", True, "spn", True, 5, True, True),
(1, 3, 6, 8, None, None, False, "spn", True, 6, True, True, 0),
(5, 3, 5, 6, "incremental", "cdf", False, "spn", False, 5, True, True, 0),
(5, 3, 5, 6, "obs", "mean", True, "spn", True, 5, True, True, 0),
# Test for smooth radar mask
(1, 3, 6, 8, None, None, False, "spn", True, 6, False, False, 80),
(5, 3, 5, 6, "incremental", "cdf", False, "spn", False, 5, False, False, 80),
(5, 3, 5, 6, "obs", "mean", False, "spn", False, 5, False, False, 80),
(1, 3, 6, 8, None, None, False, "spn", True, 6, False, True, 80),
(5, 3, 5, 6, "incremental", "cdf", False, "spn", False, 5, True, False, 80),
(5, 3, 5, 6, "obs", "mean", False, "spn", False, 5, True, True, 80),
]

steps_arg_names = (
"n_models",
"n_timesteps",
Expand All @@ -46,6 +54,7 @@
"expected_n_ens_members",
"zero_radar",
"zero_nwp",
"smooth_radar_mask_range",
)


Expand All @@ -63,6 +72,7 @@ def test_steps_blending(
expected_n_ens_members,
zero_radar,
zero_nwp,
smooth_radar_mask_range,
):
pytest.importorskip("cv2")

Expand Down Expand Up @@ -254,6 +264,7 @@ def test_steps_blending(
conditional=False,
probmatching_method=probmatching_method,
mask_method=mask_method,
smooth_radar_mask_range=smooth_radar_mask_range,
callback=None,
return_output=True,
seed=None,
Expand Down
43 changes: 42 additions & 1 deletion pysteps/tests/test_blending_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
compute_store_nwp_motion,
load_NWP,
check_norain,
compute_smooth_dilated_mask,
)

pytest.importorskip("netCDF4")
Expand Down Expand Up @@ -140,12 +141,27 @@
)
]

smoothing_arg_names = (
"precip_nwp",
"max_padding_size_in_px",
"gaussian_kernel_size",
"inverted",
"non_linear_growth_kernel_sizes",
)

smoothing_arg_values = [
(precip_nwp, 80, 9, False, False),
(precip_nwp, 10, 9, False, False),
(precip_nwp, 80, 5, False, False),
(precip_nwp, 80, 9, True, False),
(precip_nwp, 80, 9, False, True),
]


###
# The test
###
@pytest.mark.parametrize(utils_arg_names, utils_arg_values)

# The test function to be used
def test_blending_utils(
precip_nwp,
Expand Down Expand Up @@ -404,3 +420,28 @@ def test_blending_utils(

# should always give norain if the threshold is set to 100%
assert check_norain(precip_arr, norain_thr=1.0)


# Finally, also test the compute_smooth_dilated mask functionality
@pytest.mark.parametrize(smoothing_arg_names, smoothing_arg_values)
def test_blending_smoothing_utils(
precip_nwp,
max_padding_size_in_px,
gaussian_kernel_size,
inverted,
non_linear_growth_kernel_sizes,
):
# First add some nans to indicate a mask
precip_nwp[:, 0:100, 0:100] = np.nan
nan_indices = np.isnan(precip_nwp[0])
new_mask = compute_smooth_dilated_mask(
nan_indices,
max_padding_size_in_px=max_padding_size_in_px,
gaussian_kernel_size=gaussian_kernel_size,
inverted=inverted,
non_linear_growth_kernel_sizes=non_linear_growth_kernel_sizes,
)
assert new_mask.shape == nan_indices.shape

if max_padding_size_in_px > 0 and inverted == False:
assert np.sum((new_mask > 0) & (new_mask < 1)) > 0