-
Notifications
You must be signed in to change notification settings - Fork 169
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MODIFY] Add support for custom colormap configuration in `precipfiel…
…d.py` This update allows user-defined ranges and colors for plots. It supports intensity (tested) and depth (untested), but not probability. [ADD] Add `plot_custom_precipitation_range.py` example demonstrating how to create a custom config and use it for plotting.
- Loading branch information
1 parent
ee60fa6
commit fc71cc7
Showing
3 changed files
with
209 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
repos: | ||
- repo: https://github.com/psf/black | ||
rev: 24.4.2 | ||
rev: 24.8.0 | ||
hooks: | ||
- id: black | ||
language_version: python3 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
#!/bin/env python | ||
""" | ||
Plot precipitation using custom colormap | ||
============= | ||
This tutorial shows how to plot data using a custom colormap with a specific | ||
range of precipitation values. | ||
""" | ||
|
||
import os | ||
from datetime import datetime | ||
import matplotlib.pyplot as plt | ||
|
||
import pysteps | ||
from pysteps import io, rcparams | ||
from pysteps.utils import conversion | ||
from pysteps.visualization import plot_precip_field | ||
from pysteps.datasets import download_pysteps_data, create_default_pystepsrc | ||
|
||
|
||
############################################################################### | ||
# Download the data if it is not available | ||
# ---------------------------------------- | ||
# | ||
# The following code block downloads datasets from the pysteps-data repository | ||
# if it is not available on the disk. The dataset is used to demonstrate the | ||
# plotting of precipitation data using a custom colormap. | ||
|
||
# Check if the pysteps-data repository is available (it would be pysteps-data in pysteps) | ||
# Implies that you are running this script from the `pysteps/examples` folder | ||
|
||
if not os.path.exists(rcparams.data_sources["mrms"]["root_path"]): | ||
download_pysteps_data("pysteps_data") | ||
config_file_path = create_default_pystepsrc("pysteps_data") | ||
print(f"Configuration file has been created at {config_file_path}") | ||
|
||
|
||
############################################################################### | ||
# Read precipitation field | ||
# ------------------------ | ||
# | ||
# First thing, load a frame from Multi-Radar Multi-Sensor dataset and convert it | ||
# to precipitation rate in mm/h. | ||
|
||
# Define the dataset and the date for which you want to load data | ||
data_source = pysteps.rcparams.data_sources["mrms"] | ||
date = datetime(2019, 6, 10, 0, 2, 0) # Example date | ||
|
||
# Extract the parameters from the data source | ||
root_path = data_source["root_path"] | ||
path_fmt = data_source["path_fmt"] | ||
fn_pattern = data_source["fn_pattern"] | ||
fn_ext = data_source["fn_ext"] | ||
importer_name = data_source["importer"] | ||
importer_kwargs = data_source["importer_kwargs"] | ||
timestep = data_source["timestep"] | ||
|
||
# Find the frame in the archive for the specified date | ||
fns = io.find_by_date( | ||
date, root_path, path_fmt, fn_pattern, fn_ext, timestep, num_prev_files=1 | ||
) | ||
|
||
# Read the frame from the archive | ||
importer = io.get_method(importer_name, "importer") | ||
R, _, metadata = io.read_timeseries(fns, importer, **importer_kwargs) | ||
|
||
# Convert the reflectivity data to rain rate | ||
R, metadata = conversion.to_rainrate(R, metadata) | ||
|
||
# Plot the first rainfall field from the loaded data | ||
plt.figure(figsize=(10, 5), dpi=300) | ||
plt.axis("off") | ||
plot_precip_field(R[0, :, :], geodata=metadata, axis="off") | ||
|
||
plt.tight_layout() | ||
plt.show() | ||
|
||
# Save the plot if needed | ||
# plt.savefig("precipitation.png", bbox_inches="tight", pad_inches=0.1) | ||
# print("The precipitation field has been plotted and saved as precipitation.png") | ||
|
||
|
||
############################################################################### | ||
# Define the custom colormap | ||
# -------------------------- | ||
# | ||
# Assume that the default colormap does not represent the precipitation values | ||
# in the desired range. In this case, you can define a custom colormap that will | ||
# be used to plot the precipitation data and pass the class instance to the | ||
# `plot_precip_field` function. | ||
# | ||
# It essential for the custom colormap to have the following attributes: | ||
# | ||
# - `cmap`: The colormap object. | ||
# - `norm`: The normalization object. | ||
# - `clevs`: The color levels for the colormap. | ||
# | ||
# `plot_precip_field` can handle each of the classes defined in the `matplotlib.colors` | ||
# https://matplotlib.org/stable/api/colors_api.html#colormaps | ||
# There must be as many colors in the colormap as there are levels in the color levels. | ||
|
||
|
||
# Define the custom colormap | ||
|
||
from matplotlib import colors | ||
|
||
|
||
class ColormapConfig: | ||
def __init__(self): | ||
self.cmap = None | ||
self.norm = None | ||
self.clevs = None | ||
|
||
self.build_colormap() | ||
|
||
def build_colormap(self): | ||
# Define the colormap boundaries and colors | ||
# color_list = ['lightgrey', 'lightskyblue', 'blue', 'yellow', 'orange', 'red', 'darkred'] | ||
color_list = ["blue", "navy", "yellow", "orange", "green", "brown", "red"] | ||
|
||
self.clevs = [0.1, 0.5, 1.5, 2.5, 4, 6, 10] # mm/hr | ||
|
||
# Create a ListedColormap object with the defined colors | ||
self.cmap = colors.ListedColormap(color_list) | ||
self.cmap.name = "Custom Colormap" | ||
|
||
# Set the color for values above the maximum level | ||
self.cmap.set_over("darkmagenta") | ||
# Set the color for values below the minimum level | ||
self.cmap.set_under("none") | ||
# Set the color for missing values | ||
self.cmap.set_bad("gray", alpha=0.5) | ||
|
||
# Create a BoundaryNorm object to normalize the data values to the colormap boundaries | ||
self.norm = colors.BoundaryNorm(self.clevs, self.cmap.N) | ||
|
||
|
||
# Create an instance of the ColormapConfig class | ||
config = ColormapConfig() | ||
|
||
# Plot the precipitation field using the custom colormap | ||
plt.figure(figsize=(10, 5), dpi=300) | ||
plt.axis("off") | ||
plot_precip_field(R[0, :, :], geodata=metadata, axis="off", colormap_config=config) | ||
|
||
plt.tight_layout() | ||
plt.show() | ||
|
||
# Save the plot if needed | ||
plt.savefig("precipitation_custom.png", bbox_inches="tight") | ||
print("The precipitation field has been plotted and saved as precipitation_custom.png") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters