Skip to content

psmohan/EdurekaPythonDataScienceCertification2019

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Edureka Python Data Science Certification 2019

Following are the topics covered in this course:

Basic Python

  • Types of variables
  • Loops in Python
  • Collection Datatypes
    • List
    • Tuples
    • Sets
    • Dictionaries
  • Exceptional Handling
  • OOPs concept
  • User defined functions
  • Numpy
    • Arrays
    • Matrix
  • Pandas
    • Dataframes

Data PreProcessing

  • Missing value Treatment
  • Outlier Treatment
  • Feature Scaling
  • Train and Test Split

Data Visulaization

  • Matplot Library
  • Seaborn Library

Algorithms

Supervised Learning
  • Regression
    • Simple Linear Regression
    • Multiple Linear Regression
    • Decision Tree
    • Random Forest
  • Classification
    • Logistic Regression
    • K-nearest Neighbour
    • Naive Bayes
    • Support Vector Machine
    • Decision Tree
    • Random Forest
Unsupervised Learning
  • Clustering
    • K-means Clustering
    • Hierarchical Clustering -Association Rule
    • Apriori Association
  • Dimensionality Reduction
  • Reinforcement Learning
  • Time Series
    • ARIMA
Model Selection and Boosting
  • K-Fold
  • XGBoost

About

This is the code from the Edureka python data science program.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.7%
  • Other 0.3%