Skip to content

Commit

Permalink
Correct type inference for UInt64Index during access (pandas-dev#29420)
Browse files Browse the repository at this point in the history
  • Loading branch information
oguzhanogreden authored and proost committed Dec 19, 2019
1 parent 2e78fd9 commit 0031198
Show file tree
Hide file tree
Showing 3 changed files with 38 additions and 9 deletions.
3 changes: 2 additions & 1 deletion doc/source/whatsnew/v1.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -534,7 +534,8 @@ Numeric
- Improved error message when using `frac` > 1 and `replace` = False (:issue:`27451`)
- Bug in numeric indexes resulted in it being possible to instantiate an :class:`Int64Index`, :class:`UInt64Index`, or :class:`Float64Index` with an invalid dtype (e.g. datetime-like) (:issue:`29539`)
- Bug in :class:`UInt64Index` precision loss while constructing from a list with values in the ``np.uint64`` range (:issue:`29526`)
-
- Bug in :class:`NumericIndex` construction that caused indexing to fail when integers in the ``np.uint64`` range were used (:issue:`28023`)
- Bug in :class:`NumericIndex` construction that caused :class:`UInt64Index` to be casted to :class:`Float64Index` when integers in the ``np.uint64`` range were used to index a :class:`DataFrame` (:issue:`28279`)

Conversion
^^^^^^^^^^
Expand Down
18 changes: 10 additions & 8 deletions pandas/core/indexes/numeric.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import numpy as np

from pandas._libs import index as libindex
from pandas._libs import index as libindex, lib
from pandas.util._decorators import Appender, cache_readonly

from pandas.core.dtypes.cast import astype_nansafe
Expand Down Expand Up @@ -320,13 +320,15 @@ def _convert_scalar_indexer(self, key, kind=None):

@Appender(_index_shared_docs["_convert_arr_indexer"])
def _convert_arr_indexer(self, keyarr):
# Cast the indexer to uint64 if possible so
# that the values returned from indexing are
# also uint64.
keyarr = com.asarray_tuplesafe(keyarr)
if is_integer_dtype(keyarr):
return com.asarray_tuplesafe(keyarr, dtype=np.uint64)
return keyarr
# Cast the indexer to uint64 if possible so that the values returned
# from indexing are also uint64.
dtype = None
if is_integer_dtype(keyarr) or (
lib.infer_dtype(keyarr, skipna=False) == "integer"
):
dtype = np.uint64

return com.asarray_tuplesafe(keyarr, dtype=dtype)

@Appender(_index_shared_docs["_convert_index_indexer"])
def _convert_index_indexer(self, keyarr):
Expand Down
26 changes: 26 additions & 0 deletions pandas/tests/indexes/test_numeric.py
Original file line number Diff line number Diff line change
Expand Up @@ -1209,3 +1209,29 @@ def test_range_float_union_dtype():

result = other.union(index)
tm.assert_index_equal(result, expected)


def test_uint_index_does_not_convert_to_float64():
# https://github.com/pandas-dev/pandas/issues/28279
# https://github.com/pandas-dev/pandas/issues/28023
series = pd.Series(
[0, 1, 2, 3, 4, 5],
index=[
7606741985629028552,
17876870360202815256,
17876870360202815256,
13106359306506049338,
8991270399732411471,
8991270399732411472,
],
)

result = series.loc[[7606741985629028552, 17876870360202815256]]

expected = UInt64Index(
[7606741985629028552, 17876870360202815256, 17876870360202815256],
dtype="uint64",
)
tm.assert_index_equal(result.index, expected)

tm.assert_equal(result, series[:3])

0 comments on commit 0031198

Please sign in to comment.