Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding SugarScape IG (polars with loops) #71

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file removed examples/benchmark_plot_0.png
Binary file not shown.
Binary file added examples/sugarscape_ig/benchmark_plot_0.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added examples/sugarscape_ig/benchmark_plot_1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
45 changes: 34 additions & 11 deletions examples/sugarscape_ig/performance_comparison.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,19 @@
import matplotlib.pyplot as plt
import numpy as np
import perfplot
import seaborn as sns
from ss_mesa.model import SugarscapeMesa
from ss_pandas.model import SugarscapePandas
from ss_polars.model import SugarscapePolars


class SugarScapeSetup:
def __init__(self, n: int):
if n >= 10**6:
density = 0.17 # FLAME2-GPU
else:
density = 0.04 # mesa
self.n = n
dimension = math.ceil(5 * math.sqrt(n))
dimension = math.ceil(math.sqrt(n / density))
self.sugar_grid = np.random.randint(0, 4, (dimension, dimension))
self.initial_sugar = np.random.randint(6, 25, n)
self.metabolism = np.random.randint(2, 4, n)
Expand All @@ -21,13 +25,19 @@ def __init__(self, n: int):
def mesa_implementation(setup: SugarScapeSetup):
return SugarscapeMesa(
setup.n, setup.sugar_grid, setup.initial_sugar, setup.metabolism, setup.vision
)
).run_model(100)


def mesa_frames_pandas_concise(setup: SugarScapeSetup):
return SugarscapePandas(
setup.n, setup.sugar_grid, setup.initial_sugar, setup.metabolism, setup.vision
)
).run_model(100)


def mesa_frames_polars_concise(setup: SugarScapeSetup):
return SugarscapePolars(
setup.n, setup.sugar_grid, setup.initial_sugar, setup.metabolism, setup.vision
).run_model(100)


def plot_and_print_benchmark(labels, kernels, n_range, title, image_path):
Expand All @@ -40,10 +50,8 @@ def plot_and_print_benchmark(labels, kernels, n_range, title, image_path):
equality_check=None,
title=title,
)

plt.ylabel("Execution time (s)")
out.save(image_path)

print("\nExecution times:")
for i, label in enumerate(labels):
print(f"---------------\n{label}:")
Expand All @@ -53,21 +61,36 @@ def plot_and_print_benchmark(labels, kernels, n_range, title, image_path):


def main():
"""# Mesa comparison
sns.set_theme(style="whitegrid")

labels_0 = [
"mesa",
"mesa-frames (pd concise)",
# "mesa-frames (pd concise)",
"mesa-frames (pl concise)",
]
kernels_0 = [
mesa_implementation,
mesa_frames_pandas_concise,
# mesa_frames_pandas_concise,
mesa_frames_polars_concise,
]
n_range_0 = [k for k in range(0, 100000, 10000)]
n_range_0 = [k for k in range(1, 100002, 10000)]
title_0 = "100 steps of the SugarScape IG model:\n" + " vs ".join(labels_0)
image_path_0 = "benchmark_plot_0.png"
plot_and_print_benchmark(labels_0, kernels_0, n_range_0, title_0, image_path_0)"""

plot_and_print_benchmark(labels_0, kernels_0, n_range_0, title_0, image_path_0)
# FLAME2-GPU comparison
labels_1 = [
# "mesa-frames (pd concise)",
"mesa-frames (pl concise)",
]
kernels_1 = [
# mesa_frames_pandas_concise,
mesa_frames_polars_concise,
]
n_range_1 = [k for k in range(1, 3 * 10**6 + 2, 10**6)]
title_1 = "100 steps of the SugarScape IG model:\n" + " vs ".join(labels_1)
image_path_1 = "benchmark_plot_1.png"
plot_and_print_benchmark(labels_1, kernels_1, n_range_1, title_1, image_path_1)


if __name__ == "__main__":
Expand Down
Empty file.
125 changes: 125 additions & 0 deletions examples/sugarscape_ig/ss_polars/agents.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
import numpy as np
import polars as pl

from mesa_frames import AgentSetPolars, ModelDF


class AntPolars(AgentSetPolars):
def __init__(
self,
model: ModelDF,
n_agents: int,
initial_sugar: np.ndarray | None = None,
metabolism: np.ndarray | None = None,
vision: np.ndarray | None = None,
):
super().__init__(model)

if initial_sugar is None:
initial_sugar = model.random.integers(6, 25, n_agents)
if metabolism is None:
metabolism = model.random.integers(2, 4, n_agents)
if vision is None:
vision = model.random.integers(1, 6, n_agents)

agents = pl.DataFrame(
{
"unique_id": pl.arange(n_agents, eager=True),
"sugar": model.random.integers(6, 25, n_agents),
"metabolism": model.random.integers(2, 4, n_agents),
"vision": model.random.integers(1, 6, n_agents),
}
)
self.add(agents)

def move(self):
neighborhood: pl.DataFrame = self.space.get_neighborhood(
radius=self["vision"], agents=self, include_center=True
)

# Join self.space.cells to obtain properties ('sugar') per cell
neighborhood = neighborhood.join(self.space.cells, on=["dim_0", "dim_1"])

# Join self.pos to obtain the agent_id of the center cell
# TODO: get_neighborhood/get_neighbors should return 'agent_id_center' instead of center position when input is AgentLike
neighborhood = neighborhood.with_columns(
agent_id_center=neighborhood.join(
self.pos,
left_on=["dim_0_center", "dim_1_center"],
right_on=["dim_0", "dim_1"],
)["unique_id"]
)

# Order of agents moves based on the original order of agents.
# The agent in his cell has order 0 (highest)
agent_order = neighborhood.unique(
subset=["agent_id_center"], keep="first", maintain_order=True
).with_row_count("agent_order")

neighborhood = neighborhood.join(agent_order, on="agent_id_center")

neighborhood = neighborhood.join(
agent_order.select(
pl.col("agent_id_center").alias("agent_id"),
pl.col("agent_order").alias("blocking_agent_order"),
),
on="agent_id",
)

# Filter impossible moves
neighborhood = neighborhood.filter(
pl.col("agent_order") >= pl.col("blocking_agent_order")
)

# Sort cells by sugar and radius (nearest first)
neighborhood = neighborhood.sort(["sugar", "radius"], descending=[True, False])

best_moves = pl.DataFrame()
# While there are agents that do not have a best move, keep looking for one
while len(best_moves) < len(self.agents):
# Get the best moves for each agent and if duplicates are found, select the one with the highest order
new_best_moves = (
neighborhood.group_by("agent_id_center", maintain_order=True)
.first()
.sort("agent_order")
.unique(subset=["dim_0", "dim_1"], keep="first")
)

# Agents can make the move if:
# - There is no blocking agent
# - The agent is in its own cell
# - The blocking agent has moved before him
condition = pl.col("agent_id").is_null() | (
pl.col("agent_id") == pl.col("agent_id_center")
)
if len(best_moves) > 0:
condition = condition | pl.col("agent_id").is_in(
best_moves["agent_id_center"]
)
new_best_moves = new_best_moves.filter(condition)

best_moves = pl.concat([best_moves, new_best_moves])

# Remove agents that have already moved
neighborhood = neighborhood.filter(
~pl.col("agent_id_center").is_in(best_moves["agent_id_center"])
)

# Remove cells that have been already selected
neighborhood = neighborhood.join(
best_moves.select(["dim_0", "dim_1"]), on=["dim_0", "dim_1"], how="anti"
)

self.space.move_agents(self, best_moves.select(["dim_0", "dim_1"]))

def eat(self):
cells = self.space.cells.filter(pl.col("agent_id").is_not_null())
self[cells["agent_id"], "sugar"] = (
self[cells["agent_id"], "sugar"]
+ cells["sugar"]
- self[cells["agent_id"], "metabolism"]
)

def step(self):
self.shuffle().do("move").do("eat")
self.discard(self.agents.filter(pl.col("sugar") <= 0))
49 changes: 49 additions & 0 deletions examples/sugarscape_ig/ss_polars/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
import numpy as np
import polars as pl

from mesa_frames import GridPolars, ModelDF

from .agents import AntPolars


class SugarscapePolars(ModelDF):
def __init__(
self,
n_agents: int,
sugar_grid: np.ndarray | None = None,
initial_sugar: np.ndarray | None = None,
metabolism: np.ndarray | None = None,
vision: np.ndarray | None = None,
width: int | None = None,
height: int | None = None,
):
super().__init__()
if sugar_grid is None:
sugar_grid = self.random.integers(0, 4, (width, height))
grid_dimensions = sugar_grid.shape
self.space = GridPolars(
self, grid_dimensions, neighborhood_type="von_neumann", capacity=1
)
dim_0 = pl.Series("dim_0", pl.arange(grid_dimensions[0], eager=True)).to_frame()
dim_1 = pl.Series("dim_1", pl.arange(grid_dimensions[1], eager=True)).to_frame()
sugar_grid = dim_0.join(dim_1, how="cross").with_columns(
sugar=sugar_grid.flatten(), max_sugar=sugar_grid.flatten()
)
self.space.set_cells(sugar_grid)
self.agents += AntPolars(self, n_agents, initial_sugar, metabolism, vision)
self.space.place_to_empty(self.agents)

def run_model(self, steps: int) -> list[int]:
for _ in range(steps):
if len(self.agents) == 0:
return
self.step()
empty_cells = self.space.empty_cells
full_cells = self.space.full_cells

max_sugar = self.space.cells.join(
empty_cells, on=["dim_0", "dim_1"]
).select(pl.col("max_sugar"))

self.space.set_cells(full_cells, {"sugar": 0})
self.space.set_cells(empty_cells, {"sugar": max_sugar})