Skip to content

Commit

Permalink
Add 1038 (#149)
Browse files Browse the repository at this point in the history
  • Loading branch information
Phluenam authored Oct 30, 2023
1 parent 812b20f commit b1ff7e3
Showing 1 changed file with 39 additions and 0 deletions.
39 changes: 39 additions & 0 deletions md/1038.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
ข้อนี้มีภารกิจ $N \leq 20$ ภารกิจ โดยต้องทำทุกภารกิจเพียงแต่ต้องเลือกลำดับที่จะทำ

หากทำภารกิจที่ $j$ เป็นลำดับที่ $i$ จะมีโอกาสสำเร็จ $a_{(j,i)}$ โจทย์ถามว่าผลคูณความน่าจะเป็นเหล่านี้ที่เป็นไปได้มากสุดคือเท่าไหร่

### แนวคิด

ข้อนี้เป็นโจทย์ Bitmask Dynamic Programming นั่นคือเป็นโจทย์ Dynamic Programming ที่เก็บ State เป็น Bitmask

สังเกตว่าเราสามารถเก็บคำตอบของแต่ละ State เป็น $DP[S]$ ซึ่งแทนผลคูณความน่าจะเป็นที่จะสำเร็จโดยที่ภารกิจที่สำเร็จแล้วคือ $S$ เมื่อ State $S=(b_{N}b_{N-1}\dots b_0)_2$ เป็นเลขฐานสองโดยที่ $b_j=1$ ถ้าเราทำภารกิจที่ $j$ แล้ว คำตอบจะเป็น $DP[2^N -1]$ เพราะ $2^N-1 = (11\dots1)_2$ (มี 1 $N$ ตัว)

เช่นถ้า $S=1010_2$ แสดงว่าทำภารกิจที่ 2 กับ 4 แล้ว

สังเกตว่าสำหรับ State $S$ จำนวนภารกิจที่ทำไปแล้วจะเท่ากับจำนวน bit ที่เป็น $1$ ให้จำนวนนี้เป็น $i_{S}$

สำหรับ $DP[0]$ สามารถตั้งเป็น 100 แทนโอกาส 100%

ในการคำนวณ $DP[S]$ สังเกตว่าจะต้องมีงานอันภารกิจ $j$ ที่ $b_j=1$ ใน $S$ ดังนั้นสามารถพิจารณาทีละงาน $j$ ดังกล่าวว่าผลคูณที่ดีที่สุดที่เป็นไปได้คือเท่าไหร่ ซึ่งจะได้ว่าเป็น $a_{(j, i_{S})} DP[S - (1<<j)]$ นั่นคือผลคูณของความน่าจะเป็นเมื่อทำงาน $j$ เป็นลำดับที่ $i$ กับผลคูณความน่าจะเป็นที่มากสุดที่เป็นไปได้สำหรับ $S - (1<<j)$ (ซึ่งเป็น State $S$ ก่อนทำภารกิจที่ $j$)

ดังนั้นสำหรับแต่ละ $S$ หากมีค่า $DP[0], \dots, DP[S-1]$ แล้วจะใช้เวลาคำนวณเพียง $\mathcal{O}(N)$ เมื่อพิจารณาทีละภารกิจ

ดังนั้นเมื่อต้องพิจารณา $2^N$ State เวลาทั้งหมดที่ใช้คือ $\mathcal{O}(N2^N)$

#### ตัวอย่างโค้ด

```cpp
dp[0] = 100.0;
for (int s = 1; s <= ((1 << n) - 1); s++) {
int i = 0;
for (int j = 0; j < n; j++)
i += (((1 << j) & s) != 0);

dp[s] = 0;
for (int j = 0; j < n; j++)
if (((1 << j) & s) != 0)
dp[s] = max(dp[s], dp[s ^ (1 << j)] * a[i - 1][j] / 100.0);
}
```

ตามคำอธิบายสำหรับแต่ละ $S$ จะนับจำนวนภารกิจที่สำเร็จแล้วใน State $S$ จากนั้นจะไล่ภารกิจที่สำเร็จใน $S$ ว่าควรทำอันไหนเป็นลำดับที่ $i$

0 comments on commit b1ff7e3

Please sign in to comment.