-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
39 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
ข้อนี้มีภารกิจ $N \leq 20$ ภารกิจ โดยต้องทำทุกภารกิจเพียงแต่ต้องเลือกลำดับที่จะทำ | ||
|
||
หากทำภารกิจที่ $j$ เป็นลำดับที่ $i$ จะมีโอกาสสำเร็จ $a_{(j,i)}$ โจทย์ถามว่าผลคูณความน่าจะเป็นเหล่านี้ที่เป็นไปได้มากสุดคือเท่าไหร่ | ||
|
||
### แนวคิด | ||
|
||
ข้อนี้เป็นโจทย์ Bitmask Dynamic Programming นั่นคือเป็นโจทย์ Dynamic Programming ที่เก็บ State เป็น Bitmask | ||
|
||
สังเกตว่าเราสามารถเก็บคำตอบของแต่ละ State เป็น $DP[S]$ ซึ่งแทนผลคูณความน่าจะเป็นที่จะสำเร็จโดยที่ภารกิจที่สำเร็จแล้วคือ $S$ เมื่อ State $S=(b_{N}b_{N-1}\dots b_0)_2$ เป็นเลขฐานสองโดยที่ $b_j=1$ ถ้าเราทำภารกิจที่ $j$ แล้ว คำตอบจะเป็น $DP[2^N -1]$ เพราะ $2^N-1 = (11\dots1)_2$ (มี 1 $N$ ตัว) | ||
|
||
เช่นถ้า $S=1010_2$ แสดงว่าทำภารกิจที่ 2 กับ 4 แล้ว | ||
|
||
สังเกตว่าสำหรับ State $S$ จำนวนภารกิจที่ทำไปแล้วจะเท่ากับจำนวน bit ที่เป็น $1$ ให้จำนวนนี้เป็น $i_{S}$ | ||
|
||
สำหรับ $DP[0]$ สามารถตั้งเป็น 100 แทนโอกาส 100% | ||
|
||
ในการคำนวณ $DP[S]$ สังเกตว่าจะต้องมีงานอันภารกิจ $j$ ที่ $b_j=1$ ใน $S$ ดังนั้นสามารถพิจารณาทีละงาน $j$ ดังกล่าวว่าผลคูณที่ดีที่สุดที่เป็นไปได้คือเท่าไหร่ ซึ่งจะได้ว่าเป็น $a_{(j, i_{S})} DP[S - (1<<j)]$ นั่นคือผลคูณของความน่าจะเป็นเมื่อทำงาน $j$ เป็นลำดับที่ $i$ กับผลคูณความน่าจะเป็นที่มากสุดที่เป็นไปได้สำหรับ $S - (1<<j)$ (ซึ่งเป็น State $S$ ก่อนทำภารกิจที่ $j$) | ||
|
||
ดังนั้นสำหรับแต่ละ $S$ หากมีค่า $DP[0], \dots, DP[S-1]$ แล้วจะใช้เวลาคำนวณเพียง $\mathcal{O}(N)$ เมื่อพิจารณาทีละภารกิจ | ||
|
||
ดังนั้นเมื่อต้องพิจารณา $2^N$ State เวลาทั้งหมดที่ใช้คือ $\mathcal{O}(N2^N)$ | ||
|
||
#### ตัวอย่างโค้ด | ||
|
||
```cpp | ||
dp[0] = 100.0; | ||
for (int s = 1; s <= ((1 << n) - 1); s++) { | ||
int i = 0; | ||
for (int j = 0; j < n; j++) | ||
i += (((1 << j) & s) != 0); | ||
|
||
dp[s] = 0; | ||
for (int j = 0; j < n; j++) | ||
if (((1 << j) & s) != 0) | ||
dp[s] = max(dp[s], dp[s ^ (1 << j)] * a[i - 1][j] / 100.0); | ||
} | ||
``` | ||
|
||
ตามคำอธิบายสำหรับแต่ละ $S$ จะนับจำนวนภารกิจที่สำเร็จแล้วใน State $S$ จากนั้นจะไล่ภารกิจที่สำเร็จใน $S$ ว่าควรทำอันไหนเป็นลำดับที่ $i$ |