Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for adapter loading in mllama #669

Merged
merged 2 commits into from
Nov 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions server/lorax_server/adapters/lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,11 +152,19 @@ def load(
layer_type: str,
unused_weight_names: Set[str],
) -> Optional[AdapterWeights]:
# for vlm models we need to return list of layers
# so nlayers is a list of ints in this case but in others its just an int
nlayers = model.get_num_layers_for_type(layer_type)
lora_a_list = [None] * nlayers
lora_b_list = [None] * nlayers
if type(nlayers) is int:
lora_a_list = [None] * nlayers
lora_b_list = [None] * nlayers
layer_ids = list(range(nlayers))
else:
lora_a_list = [None] * len(nlayers)
lora_b_list = [None] * len(nlayers)
layer_ids = nlayers

for layer_id in range(nlayers):
for i, layer_id in enumerate(layer_ids):
key = (layer_id, layer_type)
weight_name, layer = model.target_to_layer[key]

Expand Down Expand Up @@ -184,8 +192,8 @@ def load(

# Merge scaling factor into lora_b due to associativity of matrix multiplication:
# (A * B) * C = A * (B * C)
lora_a_list[layer_id] = lora_a.transpose(0, 1)
lora_b_list[layer_id] = lora_b.transpose(0, 1) * scale
lora_a_list[i] = lora_a.transpose(0, 1)
lora_b_list[i] = lora_b.transpose(0, 1) * scale

# pad lora ranks to be compatible with sgmv
lora_a_list = [pad_rank(w, dim=1, world_size=model.world_size) for w in lora_a_list]
Expand Down
158 changes: 129 additions & 29 deletions server/lorax_server/models/custom_modeling/mllama.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,17 +24,27 @@
from transformers.activations import ACT2FN

from lorax_server.adapters.weights import AdapterBatchData
from lorax_server.layers import (
from lorax_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
FlashLlamaLayer,
)
from lorax_server.utils.attention.common import Seqlen
from lorax_server.utils.layers import (
FastLinear,
TensorParallelAdapterRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelMultiAdapterLinear,
TensorParallelRowLinear,
)
from lorax_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
FlashLlamaLayer,
from lorax_server.utils.lora import (
FC1,
FC2,
K_PROJ,
O_PROJ,
Q_PROJ,
V_PROJ,
)
from lorax_server.utils.attention.common import Seqlen


# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
Expand Down Expand Up @@ -200,27 +210,76 @@ def _prepare_cross_attention_mask(

# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->MllamaVision
class MllamaVisionMLP(nn.Module):
def __init__(self, *, prefix, config, weights):
def __init__(self, *, prefix, config, weights, layer_id, model_type):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = TensorParallelColumnLinear.load(prefix=f"{prefix}.fc1", weights=weights, config=config, bias=True)
self.fc2 = TensorParallelRowLinear.load(prefix=f"{prefix}.fc2", weights=weights, config=config, bias=True)

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
fc1 = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.fc1"],
weights=weights,
dim=0,
bias=True,
)

out_size = fc1.linear.weight.shape[-1] * weights.process_group.size()
self.fc1 = TensorParallelMultiAdapterLinear.load(
fc1,
layer_id,
[f'{model_type}_{FC1}'],
sizes=[out_size],
process_group=weights.process_group
)
self.fc2 = TensorParallelAdapterRowLinear.load(
TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.fc2",
weights=weights,
bias=True,
),
layer_id,
f'{model_type}_{FC2}',
process_group=weights.process_group,
)

def forward(self, hidden_states: torch.Tensor, adapter_data: AdapterBatchData) -> torch.Tensor:
hidden_states = self.fc1(hidden_states, adapter_data)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.fc2(hidden_states, adapter_data)
return hidden_states


def load_attention(config, prefix, weights, layer_id, model_type, head_dim, n_head, n_head_kv):
base_layer = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=False,
)
return TensorParallelMultiAdapterLinear.load(
base_layer,
layer_id,
[f'{model_type}_{Q_PROJ}', f'{model_type}_{K_PROJ}', f'{model_type}_{V_PROJ}'],
sizes=[
head_dim * n_head,
head_dim * n_head_kv,
head_dim * n_head_kv,
],
process_group=weights.process_group,
)


class MllamaVisionSdpaAttention(nn.Module):
def __init__(self, *, prefix, config, weights):
def __init__(self, *, prefix, config, weights, layer_id, model_type):
super().__init__()

self.embed_dim = config.hidden_size
self.head_dim = config.hidden_size // config.attention_heads
self.num_heads = config.attention_heads // weights.process_group.size()
self.head_size = config.hidden_size // self.num_heads
self.num_key_value_heads = getattr(config, "n_head_kv", None) or self.num_heads

self.qkv_proj = TensorParallelColumnLinear.load_multi(
config,
Expand All @@ -229,19 +288,35 @@ def __init__(self, *, prefix, config, weights):
weights=weights,
bias=False,
)
self.o_proj = TensorParallelRowLinear.load(
self.qkv_proj = load_attention(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
prefix,
weights,
layer_id,
model_type,
self.head_size,
self.num_heads,
self.num_key_value_heads,
)
self.o_proj = TensorParallelAdapterRowLinear.load(
TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
),
layer_id,
f'{model_type}_{O_PROJ}',
process_group=weights.process_group,
)

def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
adapter_data: AdapterBatchData = None,
) -> torch.Tensor:
qkv = self.qkv_proj(hidden_state)
qkv = self.qkv_proj(hidden_state, adapter_data)
query, key, value = qkv.split(
[
self.head_dim * self.num_heads,
Expand All @@ -267,21 +342,33 @@ def forward(
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)

output = self.o_proj(attn_output)
output = self.o_proj(attn_output, adapter_data)
return output


class MllamaVisionEncoderLayer(nn.Module):
def __init__(self, *, prefix, config, weights, is_gated: bool):
def __init__(self, *, prefix, config, weights, is_gated: bool, layer_id: int, model_type: str):
super().__init__()

self.hidden_size = config.hidden_size
self.num_attention_heads = config.attention_heads
self.is_gated = is_gated
self.intermediate_size = config.intermediate_size

self.self_attn = MllamaVisionSdpaAttention(prefix=f"{prefix}.self_attn", config=config, weights=weights)
self.mlp = MllamaVisionMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.self_attn = MllamaVisionSdpaAttention(
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
layer_id=layer_id,
model_type=model_type,
)
self.mlp = MllamaVisionMLP(
prefix=f"{prefix}.mlp",
config=config,
weights=weights,
layer_id=layer_id,
model_type=model_type,
)

self.input_layernorm = nn.LayerNorm.load(prefix=f"{prefix}.input_layernorm", weights=weights, eps=1e-05)
self.post_attention_layernorm = nn.LayerNorm.load(
Expand All @@ -297,47 +384,52 @@ def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
adapter_data: AdapterBatchData = None,
):
# Self Attention
residual = hidden_state
hidden_state = self.input_layernorm(hidden_state)
hidden_state = self.self_attn(hidden_state, attention_mask=attention_mask)
hidden_state = self.self_attn(hidden_state, attention_mask, adapter_data)
gate_attn = 1 if not self.is_gated else self.gate_attn.tanh()
hidden_state = residual + gate_attn * hidden_state

# Feed forward
residual = hidden_state
hidden_state = self.post_attention_layernorm(hidden_state)
hidden_state = self.mlp(hidden_state)
hidden_state = self.mlp(hidden_state, adapter_data)
gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh()
hidden_state = residual + gate_ffn * hidden_state
return hidden_state


class MllamaVisionEncoder(nn.Module):
def __init__(self, *, prefix, config, weights, is_gated: bool, num_layers: int):
def __init__(self, *, prefix, config, weights, is_gated: bool, num_layers: int, model_type: str):
super().__init__()
self.config = config
self.layers = [
MllamaVisionEncoderLayer(
prefix=f"{prefix}.layers.{i}",
prefix=f"{prefix}.layers.{layer_id}",
config=config,
weights=weights,
is_gated=is_gated,
layer_id=layer_id,
model_type=model_type,
)
for i in range(num_layers)
for layer_id in range(num_layers)
]

def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
adapter_data: AdapterBatchData = None,
):
encoder_states = [hidden_states]
for encoder_layer in self.layers:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
adapter_data,
)

hidden_states = layer_outputs
Expand Down Expand Up @@ -465,13 +557,15 @@ def __init__(self, *, prefix, config, weights):
weights=weights,
is_gated=False,
num_layers=config.num_hidden_layers,
model_type='VISION_TRANSFORMER',
)
self.global_transformer = MllamaVisionEncoder(
prefix=f"{prefix}.global_transformer",
config=config,
weights=weights,
is_gated=True,
num_layers=config.num_global_layers,
model_type='VISION_GLOBAL_TRANSFORMER',
)

def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor:
Expand All @@ -485,6 +579,7 @@ def forward(
pixel_values: torch.Tensor,
aspect_ratio_ids: torch.Tensor,
attention_mask: torch.Tensor,
adapter_data: AdapterBatchData,
) -> torch.Tensor:
batch_size, num_concurrent_media, num_tiles, num_channels, height, width = pixel_values.shape

Expand Down Expand Up @@ -538,6 +633,7 @@ def forward(
hidden_state, all_intermediate_hidden_states = self.transformer(
hidden_state,
attention_mask=attention_mask,
adapter_data=adapter_data,
)
intermediate_hidden_states = [
hidden_state
Expand All @@ -560,7 +656,11 @@ def forward(
num_tiles * (num_patches + num_padding_patches),
dim,
)
hidden_state, _ = self.global_transformer(hidden_state, attention_mask=attention_mask)
hidden_state, _ = self.global_transformer(
hidden_state,
attention_mask=attention_mask,
adapter_data=adapter_data,
)
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media,
num_tiles,
Expand Down Expand Up @@ -854,12 +954,12 @@ def create_layer(layer_id, prefix, config, weights):
self.dtype = weights.dtype
self.device = weights.device

def vision_forward(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask):
def vision_forward(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask, adapter_data):
if aspect_ratio_ids is None:
raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
# logger.info(f"PIxel values {pixel_values.shape}")
batch_size = pixel_values.shape[0]
vision_states = self.vision_model(pixel_values, aspect_ratio_ids, aspect_ratio_mask)
vision_states = self.vision_model(pixel_values, aspect_ratio_ids, aspect_ratio_mask, adapter_data)
cross_attention_states = self.multi_modal_projector(vision_states).reshape(
-1, vision_states.shape[-2], self.hidden_size
)
Expand Down
Loading
Loading