Skip to content

User Intent Prediction in Information-seeking Conversations

License

Notifications You must be signed in to change notification settings

prdwb/UserIntentPrediction

Repository files navigation

User Intent Prediction in Information-seeking Conversations

This is the implementation "User Intent Prediction in Information-seeking Conversations". This paper has been accepted to CHIIR 2019. If you find our repo useful in your paper, please cite our work.

Our models predict user intent for utterances in information-seeking conversations. In other words, the models conduct utterance type classification. One utterance can have more than one user intent label. These models are built with Python 2.7 and Keras.

Data

We used the "MSDialog-Intent" data in the MSDialog dataset.

Code

  • ./fetch_utterances_from_db.ipynb and ./gen_ground_truth.ipynb: conduct preprocessing as described in the paper.
  • ./features/: extract features
  • ./neural_models/: different stand-alone neural models

Notes

At the time of developing, we preprocessed the data and extracted features during the process of pulling the data from our database. These codes can be adapted to work with data in json format.

About

User Intent Prediction in Information-seeking Conversations

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published