Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

curves: Second curve group and some test #49

Merged
merged 8 commits into from
May 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 3 additions & 4 deletions math/field.sage
Original file line number Diff line number Diff line change
Expand Up @@ -54,8 +54,8 @@ F_2 = GF(101 ^ 2, name="t", modulus=P)
print("extension field:", F_2, "of order:", F_2.order())

# Primitive element
f_2_primitive_element = F_2.primitive_element()
print("Primitive element of F_2:", f_2_primitive_element, f_2_primitive_element.order())
f_2_primitive_element = F_2([2, 1])
print("Primitive element of F_2:", f_2_primitive_element, f_2_primitive_element.multiplicative_order())

# 100th root of unity
F_2_order = F_2.order()
Expand All @@ -65,5 +65,4 @@ quotient = (F_2_order-1)//root_of_unity_order
f_2_omega_n = f_2_primitive_element ^ quotient
print("The", root_of_unity_order, "th root of unity of extension field is: ", f_2_omega_n)

######################################################################

######################################################################
117 changes: 117 additions & 0 deletions src/curves/g1_curve.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
use std::ops::Add;

use super::CurveParams;
use crate::field::{gf_101::GF101, FiniteField};

/// The Elliptic curve $y^2=x^3+3$, i.e.
/// - a = 0
/// - b = 3
/// - generator todo
/// - order todo
/// - field element type todo, but mock with u64 - bad thor, u64 does not implement p3_field
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq, PartialOrd, Ord)]
pub struct C101;

impl CurveParams for C101 {
type FieldElement = GF101;

const EQUATION_A: Self::FieldElement = GF101::new(0);
const EQUATION_B: Self::FieldElement = GF101::new(3);
const GENERATOR: (Self::FieldElement, Self::FieldElement) = (GF101::new(1), Self::TWO);
const ORDER: u32 = GF101::ORDER;
const THREE: Self::FieldElement = GF101::new(3);
const TWO: Self::FieldElement = GF101::new(2);
}

mod test {
use super::*;
use crate::curves::AffinePoint;
type F = GF101;

#[test]
fn point_doubling() {
let g = AffinePoint::<C101>::generator();

let two_g = g.point_doubling();
let expected_2g = AffinePoint::<C101>::new(F::new(68), F::new(74));
let expected_negative_2g = AffinePoint::<C101>::new(F::new(68), F::new(27));
assert_eq!(two_g, expected_2g);
assert_eq!(-two_g, expected_negative_2g);

let four_g = two_g.point_doubling();
let expected_4g = AffinePoint::<C101>::new(F::new(65), F::new(98));
let expected_negative_4g = AffinePoint::<C101>::new(F::new(65), F::new(3));
assert_eq!(four_g, expected_4g);
assert_eq!(-four_g, expected_negative_4g);

let eight_g = four_g.point_doubling();
let expected_8g = AffinePoint::<C101>::new(F::new(18), F::new(49));
let expected_negative_8g = AffinePoint::<C101>::new(F::new(18), F::new(52));
assert_eq!(eight_g, expected_8g);
assert_eq!(-eight_g, expected_negative_8g);

let sixteen_g = eight_g.point_doubling();
let expected_16g = AffinePoint::<C101>::new(F::new(1), F::new(99));
let expected_negative_16g = AffinePoint::<C101>::new(F::new(1), F::new(2));
assert_eq!(sixteen_g, expected_16g);
assert_eq!(-sixteen_g, expected_negative_16g);
assert_eq!(g, -sixteen_g);
}

#[test]
fn order_17() {
let g = AffinePoint::<C101>::generator();
let mut g_double = g.point_doubling();
let mut count = 2;
while g_double != g && -g_double != g {
g_double = g_double.point_doubling();
count *= 2;
}
assert_eq!(count + 1, 17);
}

#[test]
fn point_addition() {
let g = AffinePoint::<C101>::generator();
let two_g = g.point_doubling();
let three_g = g + two_g;
let expected_3g = AffinePoint::<C101>::new(F::new(26), F::new(45));
let expected_negative_3g = AffinePoint::<C101>::new(F::new(26), F::new(56));
assert_eq!(three_g, expected_3g);
assert_eq!(-three_g, expected_negative_3g);

let four_g = g + three_g;
let expected_4g = AffinePoint::<C101>::new(F::new(65), F::new(98));
let expected_negative_4g = AffinePoint::<C101>::new(F::new(65), F::new(3));
assert_eq!(four_g, expected_4g);
assert_eq!(-four_g, expected_negative_4g);

let five_g = g + four_g;
let expected_5g = AffinePoint::<C101>::new(F::new(12), F::new(32));
let expected_negative_5g = AffinePoint::<C101>::new(F::new(12), F::new(69));
assert_eq!(five_g, expected_5g);
assert_eq!(-five_g, expected_negative_5g);

assert_eq!(g + AffinePoint::new_infty(), g);
assert_eq!(AffinePoint::new_infty() + g, g);
assert_eq!(g + (-g), AffinePoint::new_infty());
}

#[test]
fn scalar_multiplication_rhs() {
let g = AffinePoint::<C101>::generator();
let two_g = g * 2;
let expected_2g = g.point_doubling();
assert_eq!(two_g, expected_2g);
assert_eq!(-two_g, -expected_2g);
}

#[test]
fn scalar_multiplication_lhs() {
let g = AffinePoint::<C101>::generator();
let two_g = 2 * g;
let expected_2g = g.point_doubling();
assert_eq!(two_g, expected_2g);
assert_eq!(-two_g, -expected_2g);
}
}
83 changes: 83 additions & 0 deletions src/curves/g2_curve.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
use std::ops::Add;

use super::CurveParams;
use crate::field::{gf_101::GF101, gf_101_2::QuadraticPlutoField, ExtensionField, FiniteField};

#[derive(Copy, Clone, Debug, Default, Eq, PartialEq, PartialOrd, Ord)]
pub struct G2Curve {}
// The Elliptic curve $y^2=x^3+3$, i.e.
// - a = 0
// - b = 3

impl CurveParams for G2Curve {
type FieldElement = QuadraticPlutoField<GF101>;

const EQUATION_A: Self::FieldElement = QuadraticPlutoField::<GF101>::ZERO;
const EQUATION_B: Self::FieldElement =
QuadraticPlutoField::<GF101>::new(GF101::new(3), GF101::ZERO);
const GENERATOR: (Self::FieldElement, Self::FieldElement) = (
QuadraticPlutoField::<GF101>::new(GF101::new(36), GF101::ZERO),
QuadraticPlutoField::<GF101>::new(GF101::ZERO, GF101::new(31)),
);
const ORDER: u32 = 289;
// extension field subgroup should have order r^2 where r is order of first group
const THREE: QuadraticPlutoField<GF101> =
QuadraticPlutoField::<GF101>::new(GF101::new(3), GF101::ZERO);
const TWO: QuadraticPlutoField<GF101> =
QuadraticPlutoField::<GF101>::new(GF101::TWO, GF101::ZERO);
}

// a naive impl with affine point

impl G2Curve {
pub fn on_curve(
x: QuadraticPlutoField<GF101>,
y: QuadraticPlutoField<GF101>,
) -> (QuadraticPlutoField<GF101>, QuadraticPlutoField<GF101>) {
println!("X: {:?}, Y: {:?}", x, y);
// TODO Continue working on this
// ( x ) ( y ) ( x , y )
// example: plug in ((36, 0), (0, 31)): (36, 31t)
// x = 36, y = 31t,
// curve : y^2=x^3+3,

// y = (31t)^2 = 52 * t^2
// check if there are any x terms, if not, element is in base field
let mut LHS = x;
let mut RHS = y;
if x.value[1] != GF101::ZERO {
LHS = x * x * (-GF101::new(2)) - Self::EQUATION_B;
} else {
LHS = x * x * x - Self::EQUATION_B;
}
if y.value[1] != GF101::ZERO {
// y has degree two so if there is a x -> there will be an x^2 term which we substitude with
// -2 since... TODO explain this and relationship to embedding degree
RHS *= -GF101::new(2);
}
// minus
LHS -= Self::EQUATION_B;
assert_eq!(LHS, RHS, "Point is not on curve");
(x, y)
}
}

mod test {
use super::*;
use crate::curves::AffinePoint;

// #[test]
// fn on_curve() {
// let gen = G2Curve::on_curve(G2Curve::GENERATOR.0, G2Curve::GENERATOR.1);
// }

// #[test]
// fn doubling() {
// let g = AffinePoint::<G2Curve>::generator();
// println!("g: {:?}", g)

// // want to asset that g = (36, 31*X)
// // right now this ^ fails to construct as it doesn't believe that the generator is a valid
// point on the curve // want to asset that 2g = (90 , 82*X)
// }
}
Loading
Loading