forked from pybamm-team/PyBaMM
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Parameter set for CBAK 15 Ah LFP cell
- Loading branch information
Pritam Kalbhor
committed
Sep 30, 2024
1 parent
b6fa67a
commit 34ec106
Showing
3 changed files
with
256 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
254 changes: 254 additions & 0 deletions
254
src/pybamm/input/parameters/lithium_ion/PKalbhor2024.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
import pybamm | ||
import numpy as np | ||
|
||
|
||
def graphite_LGM50_ocp_Chen2020(sto): | ||
""" | ||
LG M50 Graphite open-circuit potential as a function of stochiometry, fit taken | ||
from [1]. Prada2013 doesn't give an OCP for graphite, so we use this instead. | ||
References | ||
---------- | ||
.. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. | ||
Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for | ||
Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the | ||
Electrochemical Society 167 (2020): 080534. | ||
Parameters | ||
---------- | ||
sto: :class:`pybamm.Symbol` | ||
Electrode stochiometry | ||
Returns | ||
------- | ||
:class:`pybamm.Symbol` | ||
Open-circuit potential | ||
""" | ||
|
||
u_eq = ( | ||
1.9793 * np.exp(-39.3631 * sto) | ||
+ 0.2482 | ||
- 0.0909 * np.tanh(29.8538 * (sto - 0.1234)) | ||
- 0.04478 * np.tanh(14.9159 * (sto - 0.2769)) | ||
- 0.0205 * np.tanh(30.4444 * (sto - 0.6103)) | ||
) | ||
|
||
return u_eq | ||
|
||
|
||
def graphite_LGM50_electrolyte_exchange_current_density_Chen2020( | ||
c_e, c_s_surf, c_s_max, T | ||
): | ||
""" | ||
Exchange-current density for Butler-Volmer reactions between graphite and LiPF6 in | ||
EC:DMC. | ||
References | ||
---------- | ||
.. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. | ||
Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for | ||
Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the | ||
Electrochemical Society 167 (2020): 080534. | ||
Parameters | ||
---------- | ||
c_e : :class:`pybamm.Symbol` | ||
Electrolyte concentration [mol.m-3] | ||
c_s_surf : :class:`pybamm.Symbol` | ||
Particle concentration [mol.m-3] | ||
c_s_max : :class:`pybamm.Symbol` | ||
Maximum particle concentration [mol.m-3] | ||
T : :class:`pybamm.Symbol` | ||
Temperature [K] | ||
Returns | ||
------- | ||
:class:`pybamm.Symbol` | ||
Exchange-current density [A.m-2] | ||
""" | ||
m_ref = 6.48e-7 # (A/m2)(m3/mol)**1.5 - includes ref concentrations | ||
E_r = 35000 | ||
arrhenius = np.exp(E_r / pybamm.constants.R * (1 / 298.15 - 1 / T)) | ||
|
||
return m_ref * arrhenius * c_e**0.5 * c_s_surf**0.5 * (c_s_max - c_s_surf) ** 0.5 | ||
|
||
|
||
def LFP_ocp_Afshar2017(sto): | ||
""" | ||
Open-circuit potential for LFP. | ||
Parameters | ||
---------- | ||
sto : :class:`pybamm.Symbol` | ||
Stochiometry of material (li-fraction) | ||
""" | ||
|
||
params = np.array( | ||
[ | ||
-1.21559324e08, | ||
8.59031883e08, | ||
-2.55287589e09, | ||
3.92001561e09, | ||
-2.66902118e09, | ||
-8.79671575e08, | ||
3.06011283e09, | ||
-1.59368933e09, | ||
-1.48673086e09, | ||
3.05709175e09, | ||
-2.54153059e09, | ||
1.31323857e09, | ||
-4.56862227e08, | ||
1.07161468e08, | ||
-1.58571931e07, | ||
1.10403630e06, | ||
6.15187778e04, | ||
-2.14719261e04, | ||
2.06397700e03, | ||
-9.98651833e01, | ||
5.97233035e00, | ||
] | ||
) | ||
poly = np.polynomial.Polynomial(params[::-1]) | ||
return poly(sto) | ||
|
||
|
||
def LFP_electrolyte_exchange_current_density_kashkooli2017(c_e, c_s_surf, c_s_max, T): | ||
""" | ||
Exchange-current density for Butler-Volmer reactions between LFP and electrolyte | ||
References | ||
---------- | ||
.. [1] Kashkooli, A. G., Amirfazli, A., Farhad, S., Lee, D. U., Felicelli, S., Park, | ||
H. W., ... & Chen, Z. (2017). Representative volume element model of lithium-ion | ||
battery electrodes based on X-ray nano-tomography. Journal of Applied | ||
Electrochemistry, 47(3), 281-293. | ||
Parameters | ||
---------- | ||
c_e : :class:`pybamm.Symbol` | ||
Electrolyte concentration [mol.m-3] | ||
c_s_surf : :class:`pybamm.Symbol` | ||
Particle concentration [mol.m-3] | ||
c_s_max : :class:`pybamm.Symbol` | ||
Maximum particle concentration [mol.m-3] | ||
T : :class:`pybamm.Symbol` | ||
Temperature [K] | ||
Returns | ||
------- | ||
:class:`pybamm.Symbol` | ||
Exchange-current density [A.m-2] | ||
""" | ||
|
||
m_ref = 6 * 10 ** (-7) # (A/m2)(m3/mol)**1.5 - includes ref concentrations | ||
E_r = 39570 | ||
arrhenius = np.exp(E_r / pybamm.constants.R * (1 / 298.15 - 1 / T)) | ||
|
||
return m_ref * arrhenius * c_e**0.5 * c_s_surf**0.5 * (c_s_max - c_s_surf) ** 0.5 | ||
|
||
|
||
def electrolyte_conductivity_Prada2013(c_e, T): | ||
""" | ||
Conductivity of LiPF6 in EC:EMC (3:7) as a function of ion concentration. The data | ||
comes from :footcite:`Prada2013`. | ||
Parameters | ||
---------- | ||
c_e: :class:`pybamm.Symbol` | ||
Dimensional electrolyte concentration | ||
T: :class:`pybamm.Symbol` | ||
Dimensional temperature | ||
Returns | ||
------- | ||
:class:`pybamm.Symbol` | ||
Solid conductivity | ||
""" | ||
# convert c_e from mol/m3 to mol/L | ||
c_e = c_e / 1e6 | ||
|
||
sigma_e = ( | ||
4.1253e-4 | ||
+ 5.007 * c_e | ||
- 4721.2 * c_e**2 | ||
+ 1.5094e6 * c_e**3 | ||
- 1.6018e8 * c_e**4 | ||
) * 1e3 | ||
|
||
return sigma_e | ||
|
||
|
||
# Call dict via a function to avoid errors when editing in place | ||
def get_parameter_values(): | ||
""" | ||
Parameters for an LFP cell, from the paper :footcite:t:`Prada2013` | ||
""" | ||
|
||
return { | ||
"chemistry": "lithium_ion", | ||
# cell | ||
"Negative electrode thickness [m]": 154.36e-06, | ||
"Separator thickness [m]": 10e-06, | ||
"Positive electrode thickness [m]": 169e-06, | ||
"Electrode height [m]": 120.93e-03, # to give an area of 0.18 m2 | ||
"Electrode width [m]": 2.141, # to give an area of 0.18 m2 | ||
"Nominal cell capacity [A.h]": 15, | ||
"Current function [A]": 2.3, | ||
"Contact resistance [Ohm]": 0, | ||
# negative electrode | ||
"Negative electrode conductivity [S.m-1]": 215.0, | ||
"Maximum concentration in negative electrode [mol.m-3]": 16800, | ||
"Negative particle diffusivity [m2.s-1]": 3e-15, | ||
"Negative electrode OCP [V]": graphite_LGM50_ocp_Chen2020, | ||
"Negative electrode porosity": 0.36, | ||
"Negative electrode active material volume fraction": 0.6655, | ||
"Negative particle radius [m]": 5e-6, | ||
"Negative electrode Bruggeman coefficient (electrolyte)": 1.5, | ||
"Negative electrode Bruggeman coefficient (electrode)": 1.5, | ||
"Negative electrode charge transfer coefficient": 0.5, | ||
"Negative electrode double-layer capacity [F.m-2]": 0.2, | ||
"Negative electrode exchange-current density [A.m-2]" | ||
"": graphite_LGM50_electrolyte_exchange_current_density_Chen2020, | ||
"Negative electrode OCP entropic change [V.K-1]": 0, | ||
# positive electrode | ||
"Positive electrode conductivity [S.m-1]": 0.33795074, | ||
"Maximum concentration in positive electrode [mol.m-3]": 12800, | ||
"Positive particle diffusivity [m2.s-1]": 5.9e-18, | ||
"Positive electrode OCP [V]": LFP_ocp_Afshar2017, | ||
"Positive electrode porosity": 0.426, | ||
"Positive electrode active material volume fraction": 0.6259, | ||
"Positive particle radius [m]": 5e-08, | ||
"Positive electrode Bruggeman coefficient (electrode)": 1.5, | ||
"Positive electrode Bruggeman coefficient (electrolyte)": 1.5, | ||
"Positive electrode charge transfer coefficient": 0.5, | ||
"Positive electrode double-layer capacity [F.m-2]": 0.2, | ||
"Positive electrode exchange-current density [A.m-2]" | ||
"": LFP_electrolyte_exchange_current_density_kashkooli2017, | ||
"Positive electrode OCP entropic change [V.K-1]": 0, | ||
# separator | ||
"Separator porosity": 0.45, | ||
"Separator Bruggeman coefficient (electrolyte)": 1.5, | ||
# electrolyte | ||
"Initial concentration in electrolyte [mol.m-3]": 1200.0, | ||
"Cation transference number": 0.36, | ||
"Thermodynamic factor": 1.0, | ||
"Electrolyte diffusivity [m2.s-1]": 2e-10, | ||
"Electrolyte conductivity [S.m-1]": electrolyte_conductivity_Prada2013, | ||
# experiment | ||
"Reference temperature [K]": 298, | ||
"Ambient temperature [K]": 298, | ||
"Number of electrodes connected in parallel to make a cell": 1.0, | ||
"Number of cells connected in series to make a battery": 1.0, | ||
"Lower voltage cut-off [V]": 2.0, | ||
"Upper voltage cut-off [V]": 3.6, | ||
"Open-circuit voltage at 0% SOC [V]": 2.0, | ||
"Open-circuit voltage at 100% SOC [V]": 3.6, | ||
# initial concentrations adjusted to give 2.3 Ah cell with 3.6 V OCV at 100% SOC | ||
# and 2.0 V OCV at 0% SOC | ||
"Initial concentration in negative electrode [mol.m-3]": 0.72 * 34000, | ||
"Initial concentration in positive electrode [mol.m-3]": 0.0038 * 30000, | ||
"Initial temperature [K]": 298, | ||
# citations | ||
"citations": ["Chen2020", "Prada2013"], | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters