Skip to content

Commit

Permalink
Parameter set for CBAK 15 Ah LFP cell
Browse files Browse the repository at this point in the history
  • Loading branch information
Pritam Kalbhor committed Sep 30, 2024
1 parent b6fa67a commit 34ec106
Show file tree
Hide file tree
Showing 3 changed files with 256 additions and 1 deletion.
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,7 @@ Ramadass2004 = "pybamm.input.parameters.lithium_ion.Ramadass2004:get_parameter_v
Xu2019 = "pybamm.input.parameters.lithium_ion.Xu2019:get_parameter_values"
ECM_Example = "pybamm.input.parameters.ecm.example_set:get_parameter_values"
MSMR_Example = "pybamm.input.parameters.lithium_ion.MSMR_example_set:get_parameter_values"
PKalbhor2024 = "pybamm.input.parameters.lithium_ion.PKalbhor2024:get_parameter_values"

[tool.setuptools]
include-package-data = true
Expand Down
254 changes: 254 additions & 0 deletions src/pybamm/input/parameters/lithium_ion/PKalbhor2024.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,254 @@
import pybamm
import numpy as np


def graphite_LGM50_ocp_Chen2020(sto):
"""
LG M50 Graphite open-circuit potential as a function of stochiometry, fit taken
from [1]. Prada2013 doesn't give an OCP for graphite, so we use this instead.
References
----------
.. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W.
Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for
Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the
Electrochemical Society 167 (2020): 080534.
Parameters
----------
sto: :class:`pybamm.Symbol`
Electrode stochiometry
Returns
-------
:class:`pybamm.Symbol`
Open-circuit potential
"""

u_eq = (
1.9793 * np.exp(-39.3631 * sto)
+ 0.2482
- 0.0909 * np.tanh(29.8538 * (sto - 0.1234))
- 0.04478 * np.tanh(14.9159 * (sto - 0.2769))
- 0.0205 * np.tanh(30.4444 * (sto - 0.6103))
)

return u_eq


def graphite_LGM50_electrolyte_exchange_current_density_Chen2020(
c_e, c_s_surf, c_s_max, T
):
"""
Exchange-current density for Butler-Volmer reactions between graphite and LiPF6 in
EC:DMC.
References
----------
.. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W.
Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for
Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the
Electrochemical Society 167 (2020): 080534.
Parameters
----------
c_e : :class:`pybamm.Symbol`
Electrolyte concentration [mol.m-3]
c_s_surf : :class:`pybamm.Symbol`
Particle concentration [mol.m-3]
c_s_max : :class:`pybamm.Symbol`
Maximum particle concentration [mol.m-3]
T : :class:`pybamm.Symbol`
Temperature [K]
Returns
-------
:class:`pybamm.Symbol`
Exchange-current density [A.m-2]
"""
m_ref = 6.48e-7 # (A/m2)(m3/mol)**1.5 - includes ref concentrations
E_r = 35000
arrhenius = np.exp(E_r / pybamm.constants.R * (1 / 298.15 - 1 / T))

return m_ref * arrhenius * c_e**0.5 * c_s_surf**0.5 * (c_s_max - c_s_surf) ** 0.5


def LFP_ocp_Afshar2017(sto):
"""
Open-circuit potential for LFP.
Parameters
----------
sto : :class:`pybamm.Symbol`
Stochiometry of material (li-fraction)
"""

params = np.array(
[
-1.21559324e08,
8.59031883e08,
-2.55287589e09,
3.92001561e09,
-2.66902118e09,
-8.79671575e08,
3.06011283e09,
-1.59368933e09,
-1.48673086e09,
3.05709175e09,
-2.54153059e09,
1.31323857e09,
-4.56862227e08,
1.07161468e08,
-1.58571931e07,
1.10403630e06,
6.15187778e04,
-2.14719261e04,
2.06397700e03,
-9.98651833e01,
5.97233035e00,
]
)
poly = np.polynomial.Polynomial(params[::-1])
return poly(sto)


def LFP_electrolyte_exchange_current_density_kashkooli2017(c_e, c_s_surf, c_s_max, T):
"""
Exchange-current density for Butler-Volmer reactions between LFP and electrolyte
References
----------
.. [1] Kashkooli, A. G., Amirfazli, A., Farhad, S., Lee, D. U., Felicelli, S., Park,
H. W., ... & Chen, Z. (2017). Representative volume element model of lithium-ion
battery electrodes based on X-ray nano-tomography. Journal of Applied
Electrochemistry, 47(3), 281-293.
Parameters
----------
c_e : :class:`pybamm.Symbol`
Electrolyte concentration [mol.m-3]
c_s_surf : :class:`pybamm.Symbol`
Particle concentration [mol.m-3]
c_s_max : :class:`pybamm.Symbol`
Maximum particle concentration [mol.m-3]
T : :class:`pybamm.Symbol`
Temperature [K]
Returns
-------
:class:`pybamm.Symbol`
Exchange-current density [A.m-2]
"""

m_ref = 6 * 10 ** (-7) # (A/m2)(m3/mol)**1.5 - includes ref concentrations
E_r = 39570
arrhenius = np.exp(E_r / pybamm.constants.R * (1 / 298.15 - 1 / T))

return m_ref * arrhenius * c_e**0.5 * c_s_surf**0.5 * (c_s_max - c_s_surf) ** 0.5


def electrolyte_conductivity_Prada2013(c_e, T):
"""
Conductivity of LiPF6 in EC:EMC (3:7) as a function of ion concentration. The data
comes from :footcite:`Prada2013`.
Parameters
----------
c_e: :class:`pybamm.Symbol`
Dimensional electrolyte concentration
T: :class:`pybamm.Symbol`
Dimensional temperature
Returns
-------
:class:`pybamm.Symbol`
Solid conductivity
"""
# convert c_e from mol/m3 to mol/L
c_e = c_e / 1e6

sigma_e = (
4.1253e-4
+ 5.007 * c_e
- 4721.2 * c_e**2
+ 1.5094e6 * c_e**3
- 1.6018e8 * c_e**4
) * 1e3

return sigma_e


# Call dict via a function to avoid errors when editing in place
def get_parameter_values():
"""
Parameters for an LFP cell, from the paper :footcite:t:`Prada2013`
"""

return {
"chemistry": "lithium_ion",
# cell
"Negative electrode thickness [m]": 154.36e-06,
"Separator thickness [m]": 10e-06,
"Positive electrode thickness [m]": 169e-06,
"Electrode height [m]": 120.93e-03, # to give an area of 0.18 m2
"Electrode width [m]": 2.141, # to give an area of 0.18 m2
"Nominal cell capacity [A.h]": 15,
"Current function [A]": 2.3,
"Contact resistance [Ohm]": 0,
# negative electrode
"Negative electrode conductivity [S.m-1]": 215.0,
"Maximum concentration in negative electrode [mol.m-3]": 16800,
"Negative particle diffusivity [m2.s-1]": 3e-15,
"Negative electrode OCP [V]": graphite_LGM50_ocp_Chen2020,
"Negative electrode porosity": 0.36,
"Negative electrode active material volume fraction": 0.6655,
"Negative particle radius [m]": 5e-6,
"Negative electrode Bruggeman coefficient (electrolyte)": 1.5,
"Negative electrode Bruggeman coefficient (electrode)": 1.5,
"Negative electrode charge transfer coefficient": 0.5,
"Negative electrode double-layer capacity [F.m-2]": 0.2,
"Negative electrode exchange-current density [A.m-2]"
"": graphite_LGM50_electrolyte_exchange_current_density_Chen2020,
"Negative electrode OCP entropic change [V.K-1]": 0,
# positive electrode
"Positive electrode conductivity [S.m-1]": 0.33795074,
"Maximum concentration in positive electrode [mol.m-3]": 12800,
"Positive particle diffusivity [m2.s-1]": 5.9e-18,
"Positive electrode OCP [V]": LFP_ocp_Afshar2017,
"Positive electrode porosity": 0.426,
"Positive electrode active material volume fraction": 0.6259,
"Positive particle radius [m]": 5e-08,
"Positive electrode Bruggeman coefficient (electrode)": 1.5,
"Positive electrode Bruggeman coefficient (electrolyte)": 1.5,
"Positive electrode charge transfer coefficient": 0.5,
"Positive electrode double-layer capacity [F.m-2]": 0.2,
"Positive electrode exchange-current density [A.m-2]"
"": LFP_electrolyte_exchange_current_density_kashkooli2017,
"Positive electrode OCP entropic change [V.K-1]": 0,
# separator
"Separator porosity": 0.45,
"Separator Bruggeman coefficient (electrolyte)": 1.5,
# electrolyte
"Initial concentration in electrolyte [mol.m-3]": 1200.0,
"Cation transference number": 0.36,
"Thermodynamic factor": 1.0,
"Electrolyte diffusivity [m2.s-1]": 2e-10,
"Electrolyte conductivity [S.m-1]": electrolyte_conductivity_Prada2013,
# experiment
"Reference temperature [K]": 298,
"Ambient temperature [K]": 298,
"Number of electrodes connected in parallel to make a cell": 1.0,
"Number of cells connected in series to make a battery": 1.0,
"Lower voltage cut-off [V]": 2.0,
"Upper voltage cut-off [V]": 3.6,
"Open-circuit voltage at 0% SOC [V]": 2.0,
"Open-circuit voltage at 100% SOC [V]": 3.6,
# initial concentrations adjusted to give 2.3 Ah cell with 3.6 V OCV at 100% SOC
# and 2.0 V OCV at 0% SOC
"Initial concentration in negative electrode [mol.m-3]": 0.72 * 34000,
"Initial concentration in positive electrode [mol.m-3]": 0.0038 * 30000,
"Initial temperature [K]": 298,
# citations
"citations": ["Chen2020", "Prada2013"],
}
2 changes: 1 addition & 1 deletion src/pybamm/input/parameters/lithium_ion/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,4 +2,4 @@
'Ecker2015_graphite_halfcell', 'MSMR_example_set', 'Marquis2019',
'Mohtat2020', 'NCA_Kim2011', 'OKane2022',
'OKane2022_graphite_SiOx_halfcell', 'ORegan2022', 'Prada2013',
'Ramadass2004', 'Xu2019']
'Ramadass2004', 'Xu2019', 'PKalbhor2024']

0 comments on commit 34ec106

Please sign in to comment.