Skip to content

paurullan/information_retrieval-twitter

Repository files navigation

information_retrieval-twitter

Assignment for the Information retrieval course, Pisa 2011-12

The task was to capture and process a JSON collection of millions of tweets.

Notes on the material

There is space in the machine so copy whatever you need.

In case you remove accidentally something mail me [email protected]

These are very simple scripts so if you need any field or data just tell me.

Take into account that I gzip'ed most of the files for speed porpuses. Some cases, like the tweet text, are not immediately gzip.

Comprensive list:

separate_users.py: transform the X.userinfo file into a (id, screen_name) input: data/TweetTwitter-20110912_160840.usersinfo.gz output: data/TweetTwitter-20110912_160840.usersinfo.cleaned.gz

parse_tweets.py: Read the Twitter dump and separete the data into a list of tweets for every user (id, [tweet id]) and the first cleaned tweets (tweet id, text). This first cleaning only remove newlines and alike.

The head_10 is an example with only the first ten lines of the original file

input: data/TweetTwitter-20110912_160840.tweet.head_10.gz
output: data/TweetTwitter-20110912_160840.tweet.head_10.tweet_list.gz
output: data/TweetTwitter-20110912_160840.tweet.head_10.text

input: data/TweetTwitter-20110912_160840.tweet.gz
output: data/TweetTwitter-20110912_160840.tweet.tweet_list.gz
output: data/TweetTwitter-20110912_160840.tweet.text

clean_tweets.py Almost useless right now, just removes the hashes. But this gives a good framework if we want to apply heuristics and expand the hash tag.

TweetAnnotation.java (this file is found in the ~/src directory) Reads the whole cleaned file and queries TAGME. The output format is (tweet_id, [# Annotation])

    input: /l/disc3/home/ir2011/paurullan/data/TweetTwitter-20110912_160840.tweet.head_10.clean
    output: /l/disc3/home/ir2011/paurullan/data/TweetTwitter-20110912_160840.tweet.head_10.annotation

About

Assignment for the Information retrieval course, Pisa 2011-12

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages