Skip to content

Commit

Permalink
rand: implement an unbiassed random integer from a range
Browse files Browse the repository at this point in the history
Refer: swiftlang/swift#39143 for a description
of the algorithm.

It is optimal in the sense of having:

* no divisions
* minimal number of blocks of random bits from the generator
  • Loading branch information
paulidale committed Oct 25, 2023
1 parent dbbdb94 commit 6afb405
Show file tree
Hide file tree
Showing 3 changed files with 64 additions and 1 deletion.
3 changes: 2 additions & 1 deletion crypto/rand/build.info
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
LIBS=../../libcrypto

$COMMON=rand_lib.c
$CRYPTO=randfile.c rand_err.c rand_deprecated.c prov_seed.c rand_pool.c
$CRYPTO=randfile.c rand_err.c rand_deprecated.c prov_seed.c rand_pool.c \
rand_uniform.c

IF[{- !$disabled{'egd'} -}]
$CRYPTO=$CRYPTO rand_egd.c
Expand Down
59 changes: 59 additions & 0 deletions crypto/rand/rand_uniform.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
/*
* Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/

#include "crypto/rand.h"
#include "internal/common.h"

/*
* Implementation an optimal random integer in a range function.
* Refer: https://github.com/apple/swift/pull/39143 for a description
* of the algorithm.
*/
uint32_t ossl_rand_uniform_uint32(OSSL_LIB_CTX *ctx, uint32_t upper, int *err)
{
uint32_t i, f; /* integer and fractional parts */
uint32_t f2, rand; /* extra fractional part and random material */
uint64_t prod; /* temporary holding double width product */
const int n = 10; /* Maxiumum number of followup iterations */
int j;

/* Get 32 bits of entropy */
if (RAND_bytes_ex(ctx, (unsigned char *)&rand, sizeof(rand), 0) <= 0) {
*err = 1;
return 0;
}
prod = (uint64_t)upper * rand;
i = prod >> 32;
f = prod & 0xffffffff;
if (likely(f <= 1 + ~upper)) /* 1+~upper == -upper but compilers whine */
return i;

for(j = 0; j < n; j++) {
if (RAND_bytes_ex(ctx, (unsigned char *)&rand, sizeof(rand), 0) <= 0) {
*err = 1;
return 0;
}
prod = (uint64_t)upper * rand;
f2 = prod >> 32;
f += f2;
/* On overflow, add the carry to our result */
if (f < f2)
return i + 1;
/* For not all 1 bits, there is no carry so return the result */
if (unlikely(f != 0xffffffff))
return i;
/* setup for the next word of randomness */
f = prod & 0xffffffff;
}
/*
* If we get here, we've consumed 32 * n + 32 bits with no firm decision,
* this gives a bias with probability < 2^(32*n), likely acceptable.
*/
return i;
}
3 changes: 3 additions & 0 deletions include/crypto/rand.h
Original file line number Diff line number Diff line change
Expand Up @@ -140,4 +140,7 @@ EVP_RAND_CTX *ossl_rand_get0_private_noncreating(OSSL_LIB_CTX *ctx);
# else
EVP_RAND_CTX *ossl_rand_get0_seed_noncreating(OSSL_LIB_CTX *ctx);
# endif

uint32_t ossl_rand_uniform_uint32(OSSL_LIB_CTX *ctx, uint32_t upper, int *err);

#endif

0 comments on commit 6afb405

Please sign in to comment.