Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DEPR: DataFrameGroupBy.apply operating on the group keys #54950

Merged
merged 9 commits into from
Sep 7, 2023
4 changes: 2 additions & 2 deletions doc/source/user_guide/cookbook.rst
Original file line number Diff line number Diff line change
Expand Up @@ -459,7 +459,7 @@ Unlike agg, apply's callable is passed a sub-DataFrame which gives you access to
df

# List the size of the animals with the highest weight.
df.groupby("animal").apply(lambda subf: subf["size"][subf["weight"].idxmax()])
df.groupby("animal").apply(lambda subf: subf["size"][subf["weight"].idxmax()], include_groups=False)

`Using get_group
<https://stackoverflow.com/questions/14734533/how-to-access-pandas-groupby-dataframe-by-key>`__
Expand All @@ -482,7 +482,7 @@ Unlike agg, apply's callable is passed a sub-DataFrame which gives you access to
return pd.Series(["L", avg_weight, True], index=["size", "weight", "adult"])


expected_df = gb.apply(GrowUp)
expected_df = gb.apply(GrowUp, include_groups=False)
expected_df

`Expanding apply
Expand Down
14 changes: 10 additions & 4 deletions doc/source/user_guide/groupby.rst
Original file line number Diff line number Diff line change
Expand Up @@ -420,6 +420,12 @@ This is mainly syntactic sugar for the alternative, which is much more verbose:
Additionally, this method avoids recomputing the internal grouping information
derived from the passed key.

You can also include the grouping columns if you want to operate on them.

.. ipython:: python

grouped[["A", "B"]].sum()

.. _groupby.iterating-label:

Iterating through groups
Expand Down Expand Up @@ -1053,7 +1059,7 @@ missing values with the ``ffill()`` method.
).set_index("date")
df_re

df_re.groupby("group").resample("1D").ffill()
df_re.groupby("group").resample("1D", include_groups=False).ffill()

.. _groupby.filter:

Expand Down Expand Up @@ -1219,13 +1225,13 @@ the argument ``group_keys`` which defaults to ``True``. Compare

.. ipython:: python

df.groupby("A", group_keys=True).apply(lambda x: x)
df.groupby("A", group_keys=True).apply(lambda x: x, include_groups=False)

with

.. ipython:: python

df.groupby("A", group_keys=False).apply(lambda x: x)
df.groupby("A", group_keys=False).apply(lambda x: x, include_groups=False)


Numba Accelerated Routines
Expand Down Expand Up @@ -1709,7 +1715,7 @@ column index name will be used as the name of the inserted column:
result = {"b_sum": x["b"].sum(), "c_mean": x["c"].mean()}
return pd.Series(result, name="metrics")

result = df.groupby("a").apply(compute_metrics)
result = df.groupby("a").apply(compute_metrics, include_groups=False)

result

Expand Down
21 changes: 16 additions & 5 deletions doc/source/whatsnew/v0.14.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -328,13 +328,24 @@ More consistent behavior for some groupby methods:

- groupby ``head`` and ``tail`` now act more like ``filter`` rather than an aggregation:

.. ipython:: python
.. code-block:: ipython

df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])
g = df.groupby('A')
g.head(1) # filters DataFrame
In [1]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])

g.apply(lambda x: x.head(1)) # used to simply fall-through
In [2]: g = df.groupby('A')

In [3]: g.head(1) # filters DataFrame
Out[3]:
A B
0 1 2
2 5 6

In [4]: g.apply(lambda x: x.head(1)) # used to simply fall-through
Out[4]:
A B
A
1 0 1 2
5 2 5 6

- groupby head and tail respect column selection:

Expand Down
93 changes: 87 additions & 6 deletions doc/source/whatsnew/v0.18.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -77,9 +77,52 @@ Previously you would have to do this to get a rolling window mean per-group:
df = pd.DataFrame({"A": [1] * 20 + [2] * 12 + [3] * 8, "B": np.arange(40)})
df
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Change this DataFrame to make the below output be of reasonable size: df = pd.DataFrame({"A": [1] * 10 + [2] * 6 + [3] * 4, "B": np.arange(20)})

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you explain the motivation here? In general, I don't think we should be rewriting old release notes unless there is an issue we're fixing.


.. ipython:: python
.. code-block:: ipython

df.groupby("A").apply(lambda x: x.rolling(4).B.mean())
In [1]: df.groupby("A").apply(lambda x: x.rolling(4).B.mean())
Out[1]:
A
1 0 NaN
1 NaN
2 NaN
3 1.5
4 2.5
5 3.5
6 4.5
7 5.5
8 6.5
9 7.5
10 8.5
11 9.5
12 10.5
13 11.5
14 12.5
15 13.5
16 14.5
17 15.5
18 16.5
19 17.5
2 20 NaN
21 NaN
22 NaN
23 21.5
24 22.5
25 23.5
26 24.5
27 25.5
28 26.5
29 27.5
30 28.5
31 29.5
3 32 NaN
33 NaN
34 NaN
35 33.5
36 34.5
37 35.5
38 36.5
39 37.5
Name: B, dtype: float64

Now you can do:

Expand All @@ -101,15 +144,53 @@ For ``.resample(..)`` type of operations, previously you would have to:

df

.. ipython:: python
.. code-block:: ipython

df.groupby("group").apply(lambda x: x.resample("1D").ffill())
In[1]: df.groupby("group").apply(lambda x: x.resample("1D").ffill())
Out[1]:
group val
group date
1 2016-01-03 1 5
2016-01-04 1 5
2016-01-05 1 5
2016-01-06 1 5
2016-01-07 1 5
2016-01-08 1 5
2016-01-09 1 5
2016-01-10 1 6
2 2016-01-17 2 7
2016-01-18 2 7
2016-01-19 2 7
2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8

Now you can do:

.. ipython:: python
.. code-block:: ipython

df.groupby("group").resample("1D").ffill()
In[1]: df.groupby("group").resample("1D").ffill()
Out[1]:
group val
group date
1 2016-01-03 1 5
2016-01-04 1 5
2016-01-05 1 5
2016-01-06 1 5
2016-01-07 1 5
2016-01-08 1 5
2016-01-09 1 5
2016-01-10 1 6
2 2016-01-17 2 7
2016-01-18 2 7
2016-01-19 2 7
2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8

.. _whatsnew_0181.enhancements.method_chain:

Expand Down
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v2.2.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -146,12 +146,12 @@ Deprecations
- Deprecated allowing non-keyword arguments in :meth:`DataFrame.to_pickle` except ``path``. (:issue:`54229`)
- Deprecated allowing non-keyword arguments in :meth:`DataFrame.to_string` except ``buf``. (:issue:`54229`)
- Deprecated downcasting behavior in :meth:`Series.where`, :meth:`DataFrame.where`, :meth:`Series.mask`, :meth:`DataFrame.mask`, :meth:`Series.clip`, :meth:`DataFrame.clip`; in a future version these will not infer object-dtype columns to non-object dtype, or all-round floats to integer dtype. Call ``result.infer_objects(copy=False)`` on the result for object inference, or explicitly cast floats to ints. To opt in to the future version, use ``pd.set_option("future.downcasting", True)`` (:issue:`53656`)
- Deprecated including the groups in computations when using :meth:`DataFrameGroupBy.apply` and :meth:`DataFrameGroupBy.resample`; pass ``include_groups=False`` to exclude the groups (:issue:`7155`)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Are the groupby rolling/expanding/ewm ops affected by this too?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I do not believe so. The only tests that hit groupby.apply in pandas/tests/window are where they directly call groupby.apply to produce the expected result. I also grepped the code and could not find any calls to groupby.apply in pandas.core.window.

- Deprecated not passing a tuple to :class:`DataFrameGroupBy.get_group` or :class:`SeriesGroupBy.get_group` when grouping by a length-1 list-like (:issue:`25971`)
- Deprecated strings ``S``, ``U``, and ``N`` denoting units in :func:`to_timedelta` (:issue:`52536`)
- Deprecated strings ``T``, ``S``, ``L``, ``U``, and ``N`` denoting frequencies in :class:`Minute`, :class:`Second`, :class:`Milli`, :class:`Micro`, :class:`Nano` (:issue:`52536`)
- Deprecated strings ``T``, ``S``, ``L``, ``U``, and ``N`` denoting units in :class:`Timedelta` (:issue:`52536`)
- Deprecated the extension test classes ``BaseNoReduceTests``, ``BaseBooleanReduceTests``, and ``BaseNumericReduceTests``, use ``BaseReduceTests`` instead (:issue:`54663`)
-

.. ---------------------------------------------------------------------------
.. _whatsnew_220.performance:
Expand Down
26 changes: 13 additions & 13 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -8863,20 +8863,20 @@ def update(
>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
... 'Parrot', 'Parrot'],
... 'Max Speed': [380., 370., 24., 26.]})
>>> df.groupby("Animal", group_keys=True).apply(lambda x: x)
Animal Max Speed
>>> df.groupby("Animal", group_keys=True)[['Max Speed']].apply(lambda x: x)
Max Speed
topper-123 marked this conversation as resolved.
Show resolved Hide resolved
Animal
Falcon 0 Falcon 380.0
1 Falcon 370.0
Parrot 2 Parrot 24.0
3 Parrot 26.0

>>> df.groupby("Animal", group_keys=False).apply(lambda x: x)
Animal Max Speed
0 Falcon 380.0
1 Falcon 370.0
2 Parrot 24.0
3 Parrot 26.0
Falcon 0 380.0
1 370.0
Parrot 2 24.0
3 26.0

>>> df.groupby("Animal", group_keys=False)[['Max Speed']].apply(lambda x: x)
Max Speed
0 380.0
1 370.0
2 24.0
3 26.0
"""
)
)
Expand Down
Loading