Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: DataFrame constructor now accepts a numpy masked record array (GH3478) #4836

Merged
merged 1 commit into from
Sep 14, 2013
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/release.rst
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,7 @@ Improvements to existing features
its ``DataFrame``'s ``to_excel()`` methods. (:issue:`4750`)
- allow DataFrame constructor to accept more list-like objects, e.g. list of
``collections.Sequence`` and ``array.Array`` objects (:issue:`3783`,:issue:`42971`)
- DataFrame constructor now accepts a numpy masked record array (:issue:`3478`)

API Changes
~~~~~~~~~~~
Expand Down
1 change: 1 addition & 0 deletions doc/source/v0.13.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -266,6 +266,7 @@ Enhancements
``ind``, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set
the bandwidth, and to gkde.evaluate() to specify the indicies at which it
is evaluated, respecttively. See scipy docs.
- DataFrame constructor now accepts a numpy masked record array (:issue:`3478`)

.. _whatsnew_0130.refactoring:

Expand Down
76 changes: 62 additions & 14 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -394,14 +394,22 @@ def __init__(self, data=None, index=None, columns=None, dtype=None,
elif isinstance(data, dict):
mgr = self._init_dict(data, index, columns, dtype=dtype)
elif isinstance(data, ma.MaskedArray):
mask = ma.getmaskarray(data)
if mask.any():
data, fill_value = _maybe_upcast(data, copy=True)
data[mask] = fill_value

# masked recarray
if isinstance(data, ma.mrecords.MaskedRecords):
mgr = _masked_rec_array_to_mgr(data, index, columns, dtype, copy)

# a masked array
else:
data = data.copy()
mgr = self._init_ndarray(data, index, columns, dtype=dtype,
copy=copy)
mask = ma.getmaskarray(data)
if mask.any():
data, fill_value = _maybe_upcast(data, copy=True)
data[mask] = fill_value
else:
data = data.copy()
mgr = self._init_ndarray(data, index, columns, dtype=dtype,
copy=copy)

elif isinstance(data, (np.ndarray, Series)):
if data.dtype.names:
data_columns = list(data.dtype.names)
Expand Down Expand Up @@ -1009,13 +1017,7 @@ def from_records(cls, data, index=None, exclude=None, columns=None,
arr_columns.append(k)
arrays.append(v)

# reorder according to the columns
if len(columns) and len(arr_columns):
indexer = _ensure_index(
arr_columns).get_indexer(columns)
arr_columns = _ensure_index(
[arr_columns[i] for i in indexer])
arrays = [arrays[i] for i in indexer]
arrays, arr_columns = _reorder_arrays(arrays, arr_columns, columns)

elif isinstance(data, (np.ndarray, DataFrame)):
arrays, columns = _to_arrays(data, columns)
Expand Down Expand Up @@ -4817,6 +4819,52 @@ def _to_arrays(data, columns, coerce_float=False, dtype=None):
dtype=dtype)


def _masked_rec_array_to_mgr(data, index, columns, dtype, copy):
""" extract from a masked rec array and create the manager """

# essentially process a record array then fill it
fill_value = data.fill_value
fdata = ma.getdata(data)
if index is None:
index = _get_names_from_index(fdata)
if index is None:
index = _default_index(len(data))
index = _ensure_index(index)

if columns is not None:
columns = _ensure_index(columns)
arrays, arr_columns = _to_arrays(fdata, columns)

# fill if needed
new_arrays = []
for fv, arr, col in zip(fill_value, arrays, arr_columns):
mask = ma.getmaskarray(data[col])
if mask.any():
arr, fv = _maybe_upcast(arr, fill_value=fv, copy=True)
arr[mask] = fv
new_arrays.append(arr)

# create the manager
arrays, arr_columns = _reorder_arrays(new_arrays, arr_columns, columns)
if columns is None:
columns = arr_columns

mgr = _arrays_to_mgr(arrays, arr_columns, index, columns)

if copy:
mgr = mgr.copy()
return mgr

def _reorder_arrays(arrays, arr_columns, columns):
# reorder according to the columns
if columns is not None and len(columns) and arr_columns is not None and len(arr_columns):
indexer = _ensure_index(
arr_columns).get_indexer(columns)
arr_columns = _ensure_index(
[arr_columns[i] for i in indexer])
arrays = [arrays[i] for i in indexer]
return arrays, arr_columns

def _list_to_arrays(data, columns, coerce_float=False, dtype=None):
if len(data) > 0 and isinstance(data[0], tuple):
content = list(lib.to_object_array_tuples(data).T)
Expand Down
48 changes: 47 additions & 1 deletion pandas/tests/test_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,8 @@
import csv
import unittest
import nose

import functools
import itertools
from pandas.compat import(
map, zip, range, long, lrange, lmap, lzip,
OrderedDict, cPickle as pickle, u, StringIO
Expand All @@ -21,6 +22,7 @@
import numpy as np
import numpy.ma as ma
from numpy.testing import assert_array_equal
import numpy.ma.mrecords as mrecords

import pandas as pan
import pandas.core.nanops as nanops
Expand Down Expand Up @@ -2510,6 +2512,50 @@ def test_constructor_maskedarray_nonfloat(self):
self.assertEqual(True, frame['A'][1])
self.assertEqual(False, frame['C'][2])

def test_constructor_mrecarray(self):
"""
Ensure mrecarray produces frame identical to dict of masked arrays
from GH3479

"""
assert_fr_equal = functools.partial(assert_frame_equal,
check_index_type=True,
check_column_type=True,
check_frame_type=True)
arrays = [
('float', np.array([1.5, 2.0])),
('int', np.array([1, 2])),
('str', np.array(['abc', 'def'])),
]
for name, arr in arrays[:]:
arrays.append(('masked1_' + name,
np.ma.masked_array(arr, mask=[False, True])))
arrays.append(('masked_all', np.ma.masked_all((2,))))
arrays.append(('masked_none',
np.ma.masked_array([1.0, 2.5], mask=False)))

# call assert_frame_equal for all selections of 3 arrays
for comb in itertools.combinations(arrays, 3):
names, data = zip(*comb)
mrecs = mrecords.fromarrays(data, names=names)

# fill the comb
comb = dict([ (k, v.filled()) if hasattr(v,'filled') else (k, v) for k, v in comb ])

expected = DataFrame(comb,columns=names)
result = DataFrame(mrecs)
assert_fr_equal(result,expected)

# specify columns
expected = DataFrame(comb,columns=names[::-1])
result = DataFrame(mrecs, columns=names[::-1])
assert_fr_equal(result,expected)

# specify index
expected = DataFrame(comb,columns=names,index=[1,2])
result = DataFrame(mrecs, index=[1,2])
assert_fr_equal(result,expected)

def test_constructor_corner(self):
df = DataFrame(index=[])
self.assertEqual(df.values.shape, (0, 0))
Expand Down