Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DEPR: DTI int64 values and tz interpreted as UTC #30115

Merged
merged 2 commits into from
Dec 6, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -546,6 +546,7 @@ or ``matplotlib.Axes.plot``. See :ref:`plotting.formatters` for more.
- Removed the previously deprecated "by" keyword from :meth:`DataFrame.sort_index`, use :meth:`DataFrame.sort_values` instead (:issue:`10726`)
- Removed support for nested renaming in :meth:`DataFrame.aggregate`, :meth:`Series.aggregate`, :meth:`DataFrameGroupBy.aggregate`, :meth:`SeriesGroupBy.aggregate`, :meth:`Rolling.aggregate` (:issue:`18529`)
- Passing ``datetime64`` data to :class:`TimedeltaIndex` or ``timedelta64`` data to ``DatetimeIndex`` now raises ``TypeError`` (:issue:`23539`, :issue:`23937`)
- Passing ``int64`` values to :class:`DatetimeIndex` and a timezone now interprets the values as nanosecond timestamps in UTC, not wall times in the given timezone (:issue:`24559`)
- A tuple passed to :meth:`DataFrame.groupby` is now exclusively treated as a single key (:issue:`18314`)
- Removed :meth:`Series.from_array` (:issue:`18258`)
- Removed :meth:`DataFrame.from_items` (:issue:`18458`)
Expand Down
35 changes: 0 additions & 35 deletions pandas/core/arrays/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,21 +55,6 @@
from pandas.tseries.offsets import Day, Tick

_midnight = time(0, 0)
# TODO(GH-24559): Remove warning, int_as_wall_time parameter.
_i8_message = """
Passing integer-dtype data and a timezone to DatetimeIndex. Integer values
will be interpreted differently in a future version of pandas. Previously,
these were viewed as datetime64[ns] values representing the wall time
*in the specified timezone*. In the future, these will be viewed as
datetime64[ns] values representing the wall time *in UTC*. This is similar
to a nanosecond-precision UNIX epoch. To accept the future behavior, use

pd.to_datetime(integer_data, utc=True).tz_convert(tz)

To keep the previous behavior, use

pd.to_datetime(integer_data).tz_localize(tz)
"""


def tz_to_dtype(tz):
Expand Down Expand Up @@ -421,7 +406,6 @@ def _from_sequence(
dayfirst=False,
yearfirst=False,
ambiguous="raise",
int_as_wall_time=False,
):

freq, freq_infer = dtl.maybe_infer_freq(freq)
Expand All @@ -434,7 +418,6 @@ def _from_sequence(
dayfirst=dayfirst,
yearfirst=yearfirst,
ambiguous=ambiguous,
int_as_wall_time=int_as_wall_time,
)

freq, freq_infer = dtl.validate_inferred_freq(freq, inferred_freq, freq_infer)
Expand Down Expand Up @@ -1817,7 +1800,6 @@ def sequence_to_dt64ns(
dayfirst=False,
yearfirst=False,
ambiguous="raise",
int_as_wall_time=False,
):
"""
Parameters
Expand All @@ -1830,13 +1812,6 @@ def sequence_to_dt64ns(
yearfirst : bool, default False
ambiguous : str, bool, or arraylike, default 'raise'
See pandas._libs.tslibs.conversion.tz_localize_to_utc.
int_as_wall_time : bool, default False
Whether to treat ints as wall time in specified timezone, or as
nanosecond-precision UNIX epoch (wall time in UTC).
This is used in DatetimeIndex.__init__ to deprecate the wall-time
behaviour.

..versionadded:: 0.24.0

Returns
-------
Expand Down Expand Up @@ -1897,10 +1872,6 @@ def sequence_to_dt64ns(
data, dayfirst=dayfirst, yearfirst=yearfirst
)
tz = maybe_infer_tz(tz, inferred_tz)
# When a sequence of timestamp objects is passed, we always
# want to treat the (now i8-valued) data as UTC timestamps,
# not wall times.
int_as_wall_time = False

# `data` may have originally been a Categorical[datetime64[ns, tz]],
# so we need to handle these types.
Expand Down Expand Up @@ -1934,12 +1905,6 @@ def sequence_to_dt64ns(

if data.dtype != _INT64_DTYPE:
data = data.astype(np.int64, copy=False)
if int_as_wall_time and tz is not None and not timezones.is_utc(tz):
warnings.warn(_i8_message, FutureWarning, stacklevel=4)
data = conversion.tz_localize_to_utc(
data.view("i8"), tz, ambiguous=ambiguous
)
data = data.view(_NS_DTYPE)
result = data.view(_NS_DTYPE)

if copy:
Expand Down
1 change: 0 additions & 1 deletion pandas/core/indexes/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,6 @@ def __new__(
dayfirst=dayfirst,
yearfirst=yearfirst,
ambiguous=ambiguous,
int_as_wall_time=True,
)

subarr = cls._simple_new(dtarr, name=name, freq=dtarr.freq, tz=dtarr.tz)
Expand Down
36 changes: 12 additions & 24 deletions pandas/tests/indexes/datetimes/test_construction.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,15 +122,11 @@ def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture):
i = pd.date_range("20130101", periods=5, freq="H", tz=tz)
kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()}

if str(tz) in ("UTC", "tzutc()", "UTC+00:00"):
warn = None
else:
warn = FutureWarning

with tm.assert_produces_warning(warn, check_stacklevel=False):
result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs)
expected = DatetimeIndex(i, **kwargs)
tm.assert_index_equal(result, expected)
if "tz" in kwargs:
result = DatetimeIndex(i.asi8, tz="UTC").tz_convert(kwargs["tz"])

expected = DatetimeIndex(i, **kwargs)
tm.assert_index_equal(result, expected)

# localize into the provided tz
i2 = DatetimeIndex(i.tz_localize(None).asi8, tz="UTC")
Expand Down Expand Up @@ -485,11 +481,13 @@ def test_construction_with_ndarray(self):
expected = DatetimeIndex(["2013-10-07", "2013-10-08", "2013-10-09"], freq="B")
tm.assert_index_equal(result, expected)

def test_integer_values_and_tz_deprecated(self):
def test_integer_values_and_tz_interpreted_as_utc(self):
# GH-24559
values = np.array([946684800000000000])
with tm.assert_produces_warning(FutureWarning):
result = DatetimeIndex(values, tz="US/Central")
val = np.datetime64("2000-01-01 00:00:00", "ns")
values = np.array([val.view("i8")])

result = DatetimeIndex(values).tz_localize("US/Central")

expected = pd.DatetimeIndex(["2000-01-01T00:00:00"], tz="US/Central")
tm.assert_index_equal(result, expected)

Expand Down Expand Up @@ -718,17 +716,7 @@ def test_constructor_timestamp_near_dst(self):
@pytest.mark.parametrize("box", [np.array, partial(np.array, dtype=object), list])
@pytest.mark.parametrize(
"tz, dtype",
[
pytest.param(
"US/Pacific",
"datetime64[ns, US/Pacific]",
marks=[
pytest.mark.xfail(),
pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning"),
],
),
[None, "datetime64[ns]"],
],
[("US/Pacific", "datetime64[ns, US/Pacific]"), (None, "datetime64[ns]")],
)
def test_constructor_with_int_tz(self, klass, box, tz, dtype):
# GH 20997, 20964
Expand Down
5 changes: 2 additions & 3 deletions pandas/tests/indexes/multi/test_integrity.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,9 +49,8 @@ def test_values_multiindex_datetimeindex():
# Test to ensure we hit the boxing / nobox part of MI.values
ints = np.arange(10 ** 18, 10 ** 18 + 5)
naive = pd.DatetimeIndex(ints)
# TODO(GH-24559): Remove the FutureWarning
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
aware = pd.DatetimeIndex(ints, tz="US/Central")

aware = pd.DatetimeIndex(ints, tz="US/Central")

idx = pd.MultiIndex.from_arrays([naive, aware])
result = idx.values
Expand Down
29 changes: 13 additions & 16 deletions pandas/tests/indexes/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -453,9 +453,9 @@ def test_constructor_dtypes_to_timedelta(self, cast_index, vals):
index = Index(vals)
assert isinstance(index, TimedeltaIndex)

@pytest.mark.parametrize("attr, utc", [["values", False], ["asi8", True]])
@pytest.mark.parametrize("attr", ["values", "asi8"])
@pytest.mark.parametrize("klass", [pd.Index, pd.DatetimeIndex])
def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, utc, klass):
def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, klass):
# Test constructing with a datetimetz dtype
# .values produces numpy datetimes, so these are considered naive
# .asi8 produces integers, so these are considered epoch timestamps
Expand All @@ -466,30 +466,27 @@ def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, utc, klass):
index = index.tz_localize(tz_naive_fixture)
dtype = index.dtype

if (
tz_naive_fixture
and attr == "asi8"
and str(tz_naive_fixture) not in ("UTC", "tzutc()", "UTC+00:00")
):
ex_warn = FutureWarning
if attr == "asi8":
result = pd.DatetimeIndex(arg).tz_localize(tz_naive_fixture)
else:
ex_warn = None

# stacklevel is checked elsewhere. We don't do it here since
# Index will have an frame, throwing off the expected.
with tm.assert_produces_warning(ex_warn, check_stacklevel=False):
result = klass(arg, tz=tz_naive_fixture)
tm.assert_index_equal(result, index)

with tm.assert_produces_warning(ex_warn, check_stacklevel=False):
if attr == "asi8":
result = pd.DatetimeIndex(arg).astype(dtype)
else:
result = klass(arg, dtype=dtype)
tm.assert_index_equal(result, index)

with tm.assert_produces_warning(ex_warn, check_stacklevel=False):
if attr == "asi8":
result = pd.DatetimeIndex(list(arg)).tz_localize(tz_naive_fixture)
else:
result = klass(list(arg), tz=tz_naive_fixture)
tm.assert_index_equal(result, index)

with tm.assert_produces_warning(ex_warn, check_stacklevel=False):
if attr == "asi8":
result = pd.DatetimeIndex(list(arg)).astype(dtype)
else:
result = klass(list(arg), dtype=dtype)
tm.assert_index_equal(result, index)

Expand Down