Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CLN: remove unnecessary type checks #29517

Merged
merged 1 commit into from
Nov 11, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 0 additions & 118 deletions pandas/core/dtypes/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -1285,124 +1285,6 @@ def _is_unorderable_exception(e: TypeError) -> bool:
return "unorderable" in str(e)


def is_numeric_v_string_like(a, b):
"""
Check if we are comparing a string-like object to a numeric ndarray.

NumPy doesn't like to compare such objects, especially numeric arrays
and scalar string-likes.

Parameters
----------
a : array-like, scalar
The first object to check.
b : array-like, scalar
The second object to check.

Returns
-------
boolean
Whether we return a comparing a string-like object to a numeric array.

Examples
--------
>>> is_numeric_v_string_like(1, 1)
False
>>> is_numeric_v_string_like("foo", "foo")
False
>>> is_numeric_v_string_like(1, "foo") # non-array numeric
False
>>> is_numeric_v_string_like(np.array([1]), "foo")
True
>>> is_numeric_v_string_like("foo", np.array([1])) # symmetric check
True
>>> is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"]))
True
>>> is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2]))
True
>>> is_numeric_v_string_like(np.array([1]), np.array([2]))
False
>>> is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"]))
False
"""

is_a_array = isinstance(a, np.ndarray)
is_b_array = isinstance(b, np.ndarray)

is_a_numeric_array = is_a_array and is_numeric_dtype(a)
is_b_numeric_array = is_b_array and is_numeric_dtype(b)
is_a_string_array = is_a_array and is_string_like_dtype(a)
is_b_string_array = is_b_array and is_string_like_dtype(b)

is_a_scalar_string_like = not is_a_array and isinstance(a, str)
is_b_scalar_string_like = not is_b_array and isinstance(b, str)

return (
(is_a_numeric_array and is_b_scalar_string_like)
or (is_b_numeric_array and is_a_scalar_string_like)
or (is_a_numeric_array and is_b_string_array)
or (is_b_numeric_array and is_a_string_array)
)


def is_datetimelike_v_numeric(a, b):
"""
Check if we are comparing a datetime-like object to a numeric object.

By "numeric," we mean an object that is either of an int or float dtype.

Parameters
----------
a : array-like, scalar
The first object to check.
b : array-like, scalar
The second object to check.

Returns
-------
boolean
Whether we return a comparing a datetime-like to a numeric object.

Examples
--------
>>> dt = np.datetime64(pd.datetime(2017, 1, 1))
>>>
>>> is_datetimelike_v_numeric(1, 1)
False
>>> is_datetimelike_v_numeric(dt, dt)
False
>>> is_datetimelike_v_numeric(1, dt)
True
>>> is_datetimelike_v_numeric(dt, 1) # symmetric check
True
>>> is_datetimelike_v_numeric(np.array([dt]), 1)
True
>>> is_datetimelike_v_numeric(np.array([1]), dt)
True
>>> is_datetimelike_v_numeric(np.array([dt]), np.array([1]))
True
>>> is_datetimelike_v_numeric(np.array([1]), np.array([2]))
False
>>> is_datetimelike_v_numeric(np.array([dt]), np.array([dt]))
False
"""

if not hasattr(a, "dtype"):
a = np.asarray(a)
if not hasattr(b, "dtype"):
b = np.asarray(b)

def is_numeric(x):
"""
Check if an object has a numeric dtype (i.e. integer or float).
"""
return is_integer_dtype(x) or is_float_dtype(x)

return (needs_i8_conversion(a) and is_numeric(b)) or (
needs_i8_conversion(b) and is_numeric(a)
)


def needs_i8_conversion(arr_or_dtype):
"""
Check whether the array or dtype should be converted to int64.
Expand Down
9 changes: 2 additions & 7 deletions pandas/core/dtypes/missing.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@
is_complex_dtype,
is_datetime64_dtype,
is_datetime64tz_dtype,
is_datetimelike_v_numeric,
is_dtype_equal,
is_extension_array_dtype,
is_float_dtype,
Expand Down Expand Up @@ -463,12 +462,8 @@ def array_equivalent(left, right, strict_nan=False):
return True
return ((left == right) | (isna(left) & isna(right))).all()

# numpy will will not allow this type of datetimelike vs integer comparison
elif is_datetimelike_v_numeric(left, right):
return False

# M8/m8
elif needs_i8_conversion(left) and needs_i8_conversion(right):
elif needs_i8_conversion(left) or needs_i8_conversion(right):
# datetime64, timedelta64, Period
if not is_dtype_equal(left.dtype, right.dtype):
return False

Expand Down
12 changes: 1 addition & 11 deletions pandas/core/internals/managers.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,8 @@
)
from pandas.core.dtypes.common import (
_NS_DTYPE,
is_datetimelike_v_numeric,
is_extension_array_dtype,
is_list_like,
is_numeric_v_string_like,
is_scalar,
is_sparse,
)
Expand Down Expand Up @@ -1926,15 +1924,7 @@ def _compare_or_regex_search(a, b, regex=False):
is_a_array = isinstance(a, np.ndarray)
is_b_array = isinstance(b, np.ndarray)

# numpy deprecation warning to have i8 vs integer comparisons
if is_datetimelike_v_numeric(a, b):
result = False

# numpy deprecation warning if comparing numeric vs string-like
elif is_numeric_v_string_like(a, b):
result = False
else:
result = op(a)
result = op(a)

if is_scalar(result) and (is_a_array or is_b_array):
type_names = [type(a).__name__, type(b).__name__]
Expand Down
15 changes: 2 additions & 13 deletions pandas/core/missing.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
is_datetime64_dtype,
is_datetime64tz_dtype,
is_integer_dtype,
is_numeric_v_string_like,
is_scalar,
is_timedelta64_dtype,
needs_i8_conversion,
Expand All @@ -39,24 +38,14 @@ def mask_missing(arr, values_to_mask):
mask = None
for x in nonna:
if mask is None:

# numpy elementwise comparison warning
if is_numeric_v_string_like(arr, x):
mask = False
else:
mask = arr == x
mask = arr == x

# if x is a string and arr is not, then we get False and we must
# expand the mask to size arr.shape
if is_scalar(mask):
mask = np.zeros(arr.shape, dtype=bool)
else:

# numpy elementwise comparison warning
if is_numeric_v_string_like(arr, x):
mask |= False
else:
mask |= arr == x
mask |= arr == x

if na_mask.any():
if mask is None:
Expand Down
28 changes: 0 additions & 28 deletions pandas/tests/dtypes/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -493,34 +493,6 @@ def test_is_datetime_or_timedelta_dtype():
assert com.is_datetime_or_timedelta_dtype(np.array([], dtype=np.datetime64))


def test_is_numeric_v_string_like():
assert not com.is_numeric_v_string_like(1, 1)
assert not com.is_numeric_v_string_like(1, "foo")
assert not com.is_numeric_v_string_like("foo", "foo")
assert not com.is_numeric_v_string_like(np.array([1]), np.array([2]))
assert not com.is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"]))

assert com.is_numeric_v_string_like(np.array([1]), "foo")
assert com.is_numeric_v_string_like("foo", np.array([1]))
assert com.is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"]))
assert com.is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2]))


def test_is_datetimelike_v_numeric():
dt = np.datetime64(pd.datetime(2017, 1, 1))

assert not com.is_datetimelike_v_numeric(1, 1)
assert not com.is_datetimelike_v_numeric(dt, dt)
assert not com.is_datetimelike_v_numeric(np.array([1]), np.array([2]))
assert not com.is_datetimelike_v_numeric(np.array([dt]), np.array([dt]))

assert com.is_datetimelike_v_numeric(1, dt)
assert com.is_datetimelike_v_numeric(1, dt)
assert com.is_datetimelike_v_numeric(np.array([dt]), 1)
assert com.is_datetimelike_v_numeric(np.array([1]), dt)
assert com.is_datetimelike_v_numeric(np.array([dt]), np.array([1]))


def test_needs_i8_conversion():
assert not com.needs_i8_conversion(str)
assert not com.needs_i8_conversion(np.int64)
Expand Down