Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DOC: update pandas.core.groupby.DataFrameGroupBy.resample docstring. #20374

107 changes: 103 additions & 4 deletions pandas/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1307,12 +1307,111 @@ def describe(self, **kwargs):
return result.T
return result.unstack()

@Substitution(name='groupby')
@Appender(_doc_template)
def resample(self, rule, *args, **kwargs):
"""
Provide resampling when using a TimeGrouper
Return a new grouper with our resampler appended
Provide resampling when using a TimeGrouper.

Given a grouper, the function resamples it according to a string
"string" -> "frequency".

See the :ref:`frequency aliases <timeseries.offset-aliases>`
documentation for more details.

Parameters
----------
rule : str or DateOffset
The offset string or object representing target grouper conversion.
*args, **kwargs
Possible arguments are `how`, `fill_method`, `limit`, `kind` and
`on`, and other arguments of `TimeGrouper`.

Returns
-------
Grouper
Return a new grouper with our resampler appended.

See Also
--------
pandas.Grouper : Specify a frequency to resample with when
grouping by a key.
DatetimeIndex.resample : Frequency conversion and resampling of
time series.

Examples
--------
>>> idx = pd.date_range('1/1/2000', periods=4, freq='T')
>>> df = pd.DataFrame(data=4 * [range(2)],
... index=idx,
... columns=['a', 'b'])
>>> df.iloc[2, 0] = 5
>>> df
a b
2000-01-01 00:00:00 0 1
2000-01-01 00:01:00 0 1
2000-01-01 00:02:00 5 1
2000-01-01 00:03:00 0 1

Downsample the DataFrame into 3 minute bins and sum the values of
the timestamps falling into a bin.

>>> df.groupby('a').resample('3T').sum()
a b
a
0 2000-01-01 00:00:00 0 2
2000-01-01 00:03:00 0 1
5 2000-01-01 00:00:00 5 1

Upsample the series into 30 second bins.

>>> df.groupby('a').resample('30S').sum()
a b
a
0 2000-01-01 00:00:00 0 1
2000-01-01 00:00:30 0 0
2000-01-01 00:01:00 0 1
2000-01-01 00:01:30 0 0
2000-01-01 00:02:00 0 0
2000-01-01 00:02:30 0 0
2000-01-01 00:03:00 0 1
5 2000-01-01 00:02:00 5 1

Resample by month. Values are assigned to the month of the period.

>>> df.groupby('a').resample('M').sum()
a b
a
0 2000-01-31 0 3
5 2000-01-31 5 1

Downsample the series into 3 minute bins as above, but close the right
side of the bin interval.

>>> df.groupby('a').resample('3T', closed='right').sum()
a b
a
0 1999-12-31 23:57:00 0 1
2000-01-01 00:00:00 0 2
5 2000-01-01 00:00:00 5 1

Downsample the series into 3 minute bins and close the right side of
the bin interval, but label each bin using the right edge instead of
the left.

>>> df.groupby('a').resample('3T', closed='right', label='right').sum()
a b
a
0 2000-01-01 00:00:00 0 1
2000-01-01 00:03:00 0 2
5 2000-01-01 00:03:00 5 1

Add an offset of twenty seconds.

>>> df.groupby('a').resample('3T', loffset='20s').sum()
a b
a
0 2000-01-01 00:00:20 0 2
2000-01-01 00:03:20 0 1
5 2000-01-01 00:00:20 5 1
"""
from pandas.core.resample import get_resampler_for_grouping
return get_resampler_for_grouping(self, rule, *args, **kwargs)
Expand Down