Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DOC: Additions/updates to documentation #17150

Merged
merged 2 commits into from
Aug 2, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 29 additions & 29 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,15 +53,15 @@
<tr>
<td>Conda</td>
<td>
<a href="http://pandas.pydata.org">
<a href="https://pandas.pydata.org">
<img src="http://pubbadges.s3-website-us-east-1.amazonaws.com/pkgs-downloads-pandas.png" alt="conda default downloads" />
</a>
</td>
</tr>
<tr>
<td>Conda-forge</td>
<td>
<a href="http://pandas.pydata.org">
<a href="https://pandas.pydata.org">
<img src="https://anaconda.org/conda-forge/pandas/badges/downloads.svg" alt="conda-forge downloads" />
</a>
</td>
Expand Down Expand Up @@ -123,31 +123,31 @@ Here are just a few of the things that pandas does well:
moving window linear regressions, date shifting and lagging, etc.


[missing-data]: http://pandas.pydata.org/pandas-docs/stable/missing_data.html#working-with-missing-data
[insertion-deletion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
[alignment]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html?highlight=alignment#intro-to-data-structures
[groupby]: http://pandas.pydata.org/pandas-docs/stable/groupby.html#group-by-split-apply-combine
[conversion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe
[slicing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#slicing-ranges
[fancy-indexing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-ix
[subsetting]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
[merging]: http://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging
[joining]: http://pandas.pydata.org/pandas-docs/stable/merging.html#joining-on-index
[reshape]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-and-pivot-tables
[pivot-table]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#pivot-tables-and-cross-tabulations
[mi]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#hierarchical-indexing-multiindex
[flat-files]: http://pandas.pydata.org/pandas-docs/stable/io.html#csv-text-files
[excel]: http://pandas.pydata.org/pandas-docs/stable/io.html#excel-files
[db]: http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
[hdfstore]: http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables
[timeseries]: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-series-date-functionality
[missing-data]: https://pandas.pydata.org/pandas-docs/stable/missing_data.html#working-with-missing-data
[insertion-deletion]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
[alignment]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html?highlight=alignment#intro-to-data-structures
[groupby]: https://pandas.pydata.org/pandas-docs/stable/groupby.html#group-by-split-apply-combine
[conversion]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe
[slicing]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#slicing-ranges
[fancy-indexing]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-ix
[subsetting]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
[merging]: https://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging
[joining]: https://pandas.pydata.org/pandas-docs/stable/merging.html#joining-on-index
[reshape]: https://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-and-pivot-tables
[pivot-table]: https://pandas.pydata.org/pandas-docs/stable/reshaping.html#pivot-tables-and-cross-tabulations
[mi]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#hierarchical-indexing-multiindex
[flat-files]: https://pandas.pydata.org/pandas-docs/stable/io.html#csv-text-files
[excel]: https://pandas.pydata.org/pandas-docs/stable/io.html#excel-files
[db]: https://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
[hdfstore]: https://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables
[timeseries]: https://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-series-date-functionality

## Where to get it
The source code is currently hosted on GitHub at:
http://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas

Binary installers for the latest released version are available at the [Python
package index](http://pypi.python.org/pypi/pandas/) and on conda.
package index](https://pypi.python.org/pypi/pandas) and on conda.

```sh
# conda
Expand All @@ -161,11 +161,11 @@ pip install pandas

## Dependencies
- [NumPy](http://www.numpy.org): 1.7.0 or higher
- [python-dateutil](http://labix.org/python-dateutil): 1.5 or higher
- [pytz](http://pytz.sourceforge.net)
- [python-dateutil](https://labix.org/python-dateutil): 1.5 or higher
- [pytz](https://pythonhosted.org/pytz)
- Needed for time zone support with ``pandas.date_range``

See the [full installation instructions](http://pandas.pydata.org/pandas-docs/stable/install.html#dependencies)
See the [full installation instructions](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies)
for recommended and optional dependencies.

## Installation from sources
Expand Down Expand Up @@ -197,13 +197,13 @@ mode](https://pip.pypa.io/en/latest/reference/pip_install.html#editable-installs
pip install -e .
```

See the full instructions for [installing from source](http://pandas.pydata.org/pandas-docs/stable/install.html#installing-from-source).
See the full instructions for [installing from source](https://pandas.pydata.org/pandas-docs/stable/install.html#installing-from-source).

## License
BSD
[BSD 3](LICENSE)

## Documentation
The official documentation is hosted on PyData.org: http://pandas.pydata.org/pandas-docs/stable/
The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable

The Sphinx documentation should provide a good starting point for learning how
to use the library. Expect the docs to continue to expand as time goes on.
Expand All @@ -223,7 +223,7 @@ Most development discussion is taking place on github in this repo. Further, the
## Contributing to pandas
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

A detailed overview on how to contribute can be found in the **[contributing guide.](http://pandas.pydata.org/pandas-docs/stable/contributing.html)**
A detailed overview on how to contribute can be found in the **[contributing guide.](https://pandas.pydata.org/pandas-docs/stable/contributing.html)**

If you are simply looking to start working with the pandas codebase, navigate to the [GitHub “issues” tab](https://github.com/pandas-dev/pandas/issues) and start looking through interesting issues. There are a number of issues listed under [Docs](https://github.com/pandas-dev/pandas/issues?labels=Docs&sort=updated&state=open) and [Difficulty Novice](https://github.com/pandas-dev/pandas/issues?q=is%3Aopen+is%3Aissue+label%3A%22Difficulty+Novice%22) where you could start out.

Expand Down
16 changes: 8 additions & 8 deletions doc/source/gotchas.rst
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,7 @@ To evaluate single-element pandas objects in a boolean context, use the method `
Bitwise boolean
~~~~~~~~~~~~~~~

Bitwise boolean operators like ``==`` and ``!=`` will return a boolean ``Series``,
Bitwise boolean operators like ``==`` and ``!=`` return a boolean ``Series``,
which is almost always what you want anyways.

.. code-block:: python
Expand Down Expand Up @@ -194,7 +194,7 @@ For lack of ``NA`` (missing) support from the ground up in NumPy and Python in
general, we were given the difficult choice between either

- A *masked array* solution: an array of data and an array of boolean values
indicating whether a value
indicating whether a value is there or is missing
- Using a special sentinel value, bit pattern, or set of sentinel values to
denote ``NA`` across the dtypes

Expand Down Expand Up @@ -247,16 +247,16 @@ dtype in order to store the NAs. These are summarized by this table:
``integer``, cast to ``float64``
``boolean``, cast to ``object``

While this may seem like a heavy trade-off, I have found very few
cases where this is an issue in practice. Some explanation for the motivation
here in the next section.
While this may seem like a heavy trade-off, I have found very few cases where
this is an issue in practice i.e. storing values greater than 2**53. Some
explanation for the motivation is in the next section.

Why not make NumPy like R?
~~~~~~~~~~~~~~~~~~~~~~~~~~

Many people have suggested that NumPy should simply emulate the ``NA`` support
present in the more domain-specific statistical programming language `R
<http://r-project.org>`__. Part of the reason is the NumPy type hierarchy:
<https://r-project.org>`__. Part of the reason is the NumPy type hierarchy:

.. csv-table::
:header: "Typeclass","Dtypes"
Expand Down Expand Up @@ -305,7 +305,7 @@ the ``DataFrame.copy`` method. If you are doing a lot of copying of DataFrame
objects shared among threads, we recommend holding locks inside the threads
where the data copying occurs.

See `this link <http://stackoverflow.com/questions/13592618/python-pandas-dataframe-thread-safe>`__
See `this link <https://stackoverflow.com/questions/13592618/python-pandas-dataframe-thread-safe>`__
for more information.


Expand All @@ -332,5 +332,5 @@ using something similar to the following:
s = pd.Series(newx)

See `the NumPy documentation on byte order
<http://docs.scipy.org/doc/numpy/user/basics.byteswapping.html>`__ for more
<https://docs.scipy.org/doc/numpy/user/basics.byteswapping.html>`__ for more
details.