Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: SparseSeries init from dict fixes #16906

Closed
wants to merge 8 commits into from
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
BUG: SparseSeries init from dict fixes
kernc committed Jul 13, 2017

Verified

This commit was signed with the committer’s verified signature.
commit 8b5305b488ec32556248bc979aa3683d852b6d52
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.21.0.txt
Original file line number Diff line number Diff line change
@@ -179,6 +179,7 @@ Sparse
^^^^^^


- Bug in instantiating :class:`SparseSeries` from ``dict`` with or without ``index`` (:issue:`16905`)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

index= kwarg


Reshaping
^^^^^^^^^
6 changes: 2 additions & 4 deletions pandas/core/sparse/series.py
Original file line number Diff line number Diff line change
@@ -146,10 +146,8 @@ def __init__(self, data=None, index=None, sparse_index=None, kind='block',
data = data._data

elif isinstance(data, (Series, dict)):
if index is None:
index = data.index.view()

data = Series(data)
data = Series(data, index=index)
index = data.index
res = make_sparse(data, kind=kind, fill_value=fill_value)
data, sparse_index, fill_value = res

96 changes: 96 additions & 0 deletions pandas/tests/sparse/test_series.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
# pylint: disable-msg=E1101,W0612

import operator
from collections import OrderedDict
from datetime import datetime

import pytest

from numpy import nan
@@ -1361,3 +1364,96 @@ def test_numpy_func_call(self):
for func in funcs:
for series in ('bseries', 'zbseries'):
getattr(np, func)(getattr(self, series))


def test_constructor_dict():
d = {'a': 0., 'b': 1., 'c': 2.}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

you might be able to move some of these into from pandas.tests.series.test_api import SharedWithSparse whech we already import (rather than directly copying them).

result = SparseSeries(d)
expected = SparseSeries(d, index=sorted(d.keys()))
tm.assert_sp_series_equal(result, expected)

result = SparseSeries(d, index=['b', 'c', 'd', 'a'])
expected = SparseSeries([1, 2, nan, 0], index=['b', 'c', 'd', 'a'])
tm.assert_sp_series_equal(result, expected)


def test_constructor_dict_multiindex():
d = {('a', 'a'): 0., ('b', 'a'): 1., ('b', 'c'): 2.}
_d = sorted(d.items())
ser = SparseSeries(d)
expected = SparseSeries(
[x[1] for x in _d],
index=pd.MultiIndex.from_tuples([x[0] for x in _d]))
tm.assert_series_equal(ser, expected)

d['z'] = 111.
_d.insert(0, ('z', d['z']))
ser = SparseSeries(d)
expected = SparseSeries([x[1] for x in _d],
index=pd.Index([x[0] for x in _d],
tupleize_cols=False))
ser = ser.reindex(index=expected.index)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

use result=

tm.assert_series_equal(ser, expected)


def test_constructor_dict_timedelta_index():
# GH #12169 : Resample category data with timedelta index
# construct Series from dict as data and TimedeltaIndex as index
# will result NaN in result Series data
expected = SparseSeries(
data=['A', 'B', 'C'],
index=pd.to_timedelta([0, 10, 20], unit='s')
)

result = SparseSeries(
data={pd.to_timedelta(0, unit='s'): 'A',
pd.to_timedelta(10, unit='s'): 'B',
pd.to_timedelta(20, unit='s'): 'C'},
index=pd.to_timedelta([0, 10, 20], unit='s')
)
tm.assert_sp_series_equal(result, expected)


def test_constructor_subclass_dict():
data = tm.TestSubDict((x, 10.0 * x) for x in range(10))
series = SparseSeries(data)
refseries = SparseSeries(dict(compat.iteritems(data)))
tm.assert_sp_series_equal(refseries, series)


def test_constructor_dict_datetime64_index():
# GH 9456
dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15']
values = [42544017.198965244, 1234565, 40512335.181958228, -1]

def create_data(constructor):
return dict(zip((constructor(x) for x in dates_as_str), values))

data_datetime64 = create_data(np.datetime64)
data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d'))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you parameterize this test

data_Timestamp = create_data(pd.Timestamp)

expected = SparseSeries(values, (pd.Timestamp(x) for x in dates_as_str))

result_datetime64 = SparseSeries(data_datetime64)
result_datetime = SparseSeries(data_datetime)
result_Timestamp = SparseSeries(data_Timestamp)

tm.assert_sp_series_equal(result_datetime64, expected)
tm.assert_sp_series_equal(result_datetime, expected)
tm.assert_sp_series_equal(result_Timestamp, expected)


def test_orderedDict_ctor():
# GH3283
data = OrderedDict(('col%s' % i, np.random.random()) for i in range(12))
s = SparseSeries(data)
tm.assert_numpy_array_equal(s.values.values, np.array(list(data.values())))

# Test with subclass
class A(OrderedDict):
pass

data = A(('col%s' % i, np.random.random()) for i in range(12))
s = SparseSeries(data)
tm.assert_numpy_array_equal(s.values.values, np.array(list(data.values())))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you use assert_sp_series_equal (you can pass check_list=False) and then add an assert about the column ordering