-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
BUG: SparseSeries init from dict fixes #16906
Changes from 1 commit
8b5305b
14f7047
991b99a
7af0dae
195550c
e7405bf
bff326a
659559c
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,9 @@ | ||
# pylint: disable-msg=E1101,W0612 | ||
|
||
import operator | ||
from collections import OrderedDict | ||
from datetime import datetime | ||
|
||
import pytest | ||
|
||
from numpy import nan | ||
|
@@ -1361,3 +1364,96 @@ def test_numpy_func_call(self): | |
for func in funcs: | ||
for series in ('bseries', 'zbseries'): | ||
getattr(np, func)(getattr(self, series)) | ||
|
||
|
||
def test_constructor_dict(): | ||
d = {'a': 0., 'b': 1., 'c': 2.} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. you might be able to move some of these into |
||
result = SparseSeries(d) | ||
expected = SparseSeries(d, index=sorted(d.keys())) | ||
tm.assert_sp_series_equal(result, expected) | ||
|
||
result = SparseSeries(d, index=['b', 'c', 'd', 'a']) | ||
expected = SparseSeries([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) | ||
tm.assert_sp_series_equal(result, expected) | ||
|
||
|
||
def test_constructor_dict_multiindex(): | ||
d = {('a', 'a'): 0., ('b', 'a'): 1., ('b', 'c'): 2.} | ||
_d = sorted(d.items()) | ||
ser = SparseSeries(d) | ||
expected = SparseSeries( | ||
[x[1] for x in _d], | ||
index=pd.MultiIndex.from_tuples([x[0] for x in _d])) | ||
tm.assert_series_equal(ser, expected) | ||
|
||
d['z'] = 111. | ||
_d.insert(0, ('z', d['z'])) | ||
ser = SparseSeries(d) | ||
expected = SparseSeries([x[1] for x in _d], | ||
index=pd.Index([x[0] for x in _d], | ||
tupleize_cols=False)) | ||
ser = ser.reindex(index=expected.index) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. use result= |
||
tm.assert_series_equal(ser, expected) | ||
|
||
|
||
def test_constructor_dict_timedelta_index(): | ||
# GH #12169 : Resample category data with timedelta index | ||
# construct Series from dict as data and TimedeltaIndex as index | ||
# will result NaN in result Series data | ||
expected = SparseSeries( | ||
data=['A', 'B', 'C'], | ||
index=pd.to_timedelta([0, 10, 20], unit='s') | ||
) | ||
|
||
result = SparseSeries( | ||
data={pd.to_timedelta(0, unit='s'): 'A', | ||
pd.to_timedelta(10, unit='s'): 'B', | ||
pd.to_timedelta(20, unit='s'): 'C'}, | ||
index=pd.to_timedelta([0, 10, 20], unit='s') | ||
) | ||
tm.assert_sp_series_equal(result, expected) | ||
|
||
|
||
def test_constructor_subclass_dict(): | ||
data = tm.TestSubDict((x, 10.0 * x) for x in range(10)) | ||
series = SparseSeries(data) | ||
refseries = SparseSeries(dict(compat.iteritems(data))) | ||
tm.assert_sp_series_equal(refseries, series) | ||
|
||
|
||
def test_constructor_dict_datetime64_index(): | ||
# GH 9456 | ||
dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] | ||
values = [42544017.198965244, 1234565, 40512335.181958228, -1] | ||
|
||
def create_data(constructor): | ||
return dict(zip((constructor(x) for x in dates_as_str), values)) | ||
|
||
data_datetime64 = create_data(np.datetime64) | ||
data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. can you parameterize this test |
||
data_Timestamp = create_data(pd.Timestamp) | ||
|
||
expected = SparseSeries(values, (pd.Timestamp(x) for x in dates_as_str)) | ||
|
||
result_datetime64 = SparseSeries(data_datetime64) | ||
result_datetime = SparseSeries(data_datetime) | ||
result_Timestamp = SparseSeries(data_Timestamp) | ||
|
||
tm.assert_sp_series_equal(result_datetime64, expected) | ||
tm.assert_sp_series_equal(result_datetime, expected) | ||
tm.assert_sp_series_equal(result_Timestamp, expected) | ||
|
||
|
||
def test_orderedDict_ctor(): | ||
# GH3283 | ||
data = OrderedDict(('col%s' % i, np.random.random()) for i in range(12)) | ||
s = SparseSeries(data) | ||
tm.assert_numpy_array_equal(s.values.values, np.array(list(data.values()))) | ||
|
||
# Test with subclass | ||
class A(OrderedDict): | ||
pass | ||
|
||
data = A(('col%s' % i, np.random.random()) for i in range(12)) | ||
s = SparseSeries(data) | ||
tm.assert_numpy_array_equal(s.values.values, np.array(list(data.values()))) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. can you use assert_sp_series_equal (you can pass check_list=False) and then add an assert about the column ordering |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
index=
kwarg