-
-
Notifications
You must be signed in to change notification settings - Fork 18.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
ValueError when applying a function that returns a list or tuple to a DataFrame that contains a Timestamp #17892
Comments
I have the same issue (see code below). The top frame (s_df) works perfectly and the bottom one doesn't work at all. The inconsistency of behavior is what I find a bit troubling because adding a column shouldn't change how
|
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
…-dev#18577) closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
Code Sample, a copy-pastable example if possible
Executing
raises an exception
Problem description
fun
returns a list (e.g.[1,2]
) rather than tuple.axis=0
.Expected Output
A pandas Series containing tuples:
Output of
pd.show_versions()
[paste the output of
pd.show_versions()
here below this line]INSTALLED VERSIONS
commit: None
python: 3.6.1.final.0
python-bits: 64
OS: Darwin
OS-release: 16.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: en_GB.UTF-8
pandas: 0.20.3
pytest: 3.0.7
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.13.3
scipy: 0.19.0
xarray: None
IPython: 5.3.0
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.3.0
numexpr: 2.6.2
feather: 0.4.0
matplotlib: 2.0.2
openpyxl: 2.4.7
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.3
bs4: 4.6.0
html5lib: 0.9999999
sqlalchemy: 1.1.9
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None
The text was updated successfully, but these errors were encountered: