-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Unexpected string->float conversion in DataFrame.groupby().apply() #15421
Labels
Milestone
Comments
gwpdt
added a commit
to gwpdt/pandas
that referenced
this issue
Mar 16, 2017
Rename test_numeric_coercion to test_apply_numeric_coercion_when_datetime, and add tests for GH pandas-dev#15421 and pandas-dev#14423
jreback
pushed a commit
that referenced
this issue
Mar 16, 2017
closes #14423 closes #15421 closes #15670 During a group-by/apply on a DataFrame, in the presence of one or more DateTime-like columns, Pandas would incorrectly coerce the type of all other columns to numeric. E.g. a String column would be coerced to numeric, producing NaNs. Author: Greg Williams <[email protected]> Closes #15680 from gwpdt/bugfix14423 and squashes the following commits: e1ed104 [Greg Williams] TST: Rename and expand test_numeric_coercion 0a15674 [Greg Williams] CLN: move import, add whatsnew entry c8844e0 [Greg Williams] CLN: PEP8 (whitespace fixes) 46d12c2 [Greg Williams] BUG: Group-by numeric type-coericion with datetime
AnkurDedania
pushed a commit
to AnkurDedania/pandas
that referenced
this issue
Mar 21, 2017
closes pandas-dev#14423 closes pandas-dev#15421 closes pandas-dev#15670 During a group-by/apply on a DataFrame, in the presence of one or more DateTime-like columns, Pandas would incorrectly coerce the type of all other columns to numeric. E.g. a String column would be coerced to numeric, producing NaNs. Author: Greg Williams <[email protected]> Closes pandas-dev#15680 from gwpdt/bugfix14423 and squashes the following commits: e1ed104 [Greg Williams] TST: Rename and expand test_numeric_coercion 0a15674 [Greg Williams] CLN: move import, add whatsnew entry c8844e0 [Greg Williams] CLN: PEP8 (whitespace fixes) 46d12c2 [Greg Williams] BUG: Group-by numeric type-coericion with datetime
mattip
pushed a commit
to mattip/pandas
that referenced
this issue
Apr 3, 2017
closes pandas-dev#14423 closes pandas-dev#15421 closes pandas-dev#15670 During a group-by/apply on a DataFrame, in the presence of one or more DateTime-like columns, Pandas would incorrectly coerce the type of all other columns to numeric. E.g. a String column would be coerced to numeric, producing NaNs. Author: Greg Williams <[email protected]> Closes pandas-dev#15680 from gwpdt/bugfix14423 and squashes the following commits: e1ed104 [Greg Williams] TST: Rename and expand test_numeric_coercion 0a15674 [Greg Williams] CLN: move import, add whatsnew entry c8844e0 [Greg Williams] CLN: PEP8 (whitespace fixes) 46d12c2 [Greg Williams] BUG: Group-by numeric type-coericion with datetime
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Code Sample, a copy-pastable example if possible
Problem description
groupby.apply() does an unexpected conversion from string to float for column 'B' in the example above. The bug is triggered only when both of the following happen:
Expected Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 2.7.13.final.0
python-bits: 64
OS: Windows
OS-release: 7
machine: AMD64
processor: Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.19.2
nose: 1.3.7
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.11.3
scipy: 0.18.1
statsmodels: 0.6.1
xarray: None
IPython: 5.1.0
sphinx: 1.5.1
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2016.10
blosc: None
bottleneck: 1.2.0
tables: 3.2.2
numexpr: 2.6.1
matplotlib: 1.5.1
openpyxl: 2.4.0
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.6
lxml: 3.7.2
bs4: 4.5.3
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.1.4
pymysql: None
psycopg2: None
jinja2: 2.8.1
boto: 2.45.0
pandas_datareader: 0.2.1
The text was updated successfully, but these errors were encountered: