Skip to content

Commit

Permalink
Merge branch 'master' into multi-index-join
Browse files Browse the repository at this point in the history
  • Loading branch information
harisbal authored Mar 17, 2018
2 parents a6c9733 + 699a48b commit f668710
Showing 1 changed file with 293 additions and 20 deletions.
313 changes: 293 additions & 20 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -7660,7 +7660,6 @@ def truncate(self, before=None, after=None, axis=None, copy=True):
5 e j
For Series, only rows can be truncated.
>>> df['A'].truncate(before=2, after=4)
2 b
3 c
Expand Down Expand Up @@ -8487,19 +8486,21 @@ def compound(self, axis=None, skipna=None, level=None):
cls.compound = compound

cls.cummin = _make_cum_function(
cls, 'cummin', name, name2, axis_descr, "cumulative minimum",
cls, 'cummin', name, name2, axis_descr, "minimum",
lambda y, axis: np.minimum.accumulate(y, axis), "min",
np.inf, np.nan)
np.inf, np.nan, _cummin_examples)
cls.cumsum = _make_cum_function(
cls, 'cumsum', name, name2, axis_descr, "cumulative sum",
lambda y, axis: y.cumsum(axis), "sum", 0., np.nan)
cls, 'cumsum', name, name2, axis_descr, "sum",
lambda y, axis: y.cumsum(axis), "sum", 0.,
np.nan, _cumsum_examples)
cls.cumprod = _make_cum_function(
cls, 'cumprod', name, name2, axis_descr, "cumulative product",
lambda y, axis: y.cumprod(axis), "prod", 1., np.nan)
cls, 'cumprod', name, name2, axis_descr, "product",
lambda y, axis: y.cumprod(axis), "prod", 1.,
np.nan, _cumprod_examples)
cls.cummax = _make_cum_function(
cls, 'cummax', name, name2, axis_descr, "cumulative max",
cls, 'cummax', name, name2, axis_descr, "maximum",
lambda y, axis: np.maximum.accumulate(y, axis), "max",
-np.inf, np.nan)
-np.inf, np.nan, _cummax_examples)

cls.sum = _make_min_count_stat_function(
cls, 'sum', name, name2, axis_descr,
Expand Down Expand Up @@ -8702,8 +8703,8 @@ def _doc_parms(cls):
Include only boolean columns. If None, will attempt to use everything,
then use only boolean data. Not implemented for Series.
**kwargs : any, default None
Additional keywords have no affect but might be accepted for
compatibility with numpy.
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
Expand Down Expand Up @@ -8761,24 +8762,296 @@ def _doc_parms(cls):
"""

_cnum_doc = """
Return cumulative %(desc)s over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative
%(desc)s.
Parameters
----------
axis : %(axis_descr)s
axis : {0 or 'index', 1 or 'columns'}, default 0
The index or the name of the axis. 0 is equivalent to None or 'index'.
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA
will be NA.
*args, **kwargs :
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
%(outname)s : %(name1)s\n
%(outname)s : %(name1)s or %(name2)s\n
%(examples)s
See also
--------
pandas.core.window.Expanding.%(accum_func_name)s : Similar functionality
but ignores ``NaN`` values.
%(name2)s.%(accum_func_name)s : Return the %(desc)s over
%(name2)s axis.
%(name2)s.cummax : Return cumulative maximum over %(name2)s axis.
%(name2)s.cummin : Return cumulative minimum over %(name2)s axis.
%(name2)s.cumsum : Return cumulative sum over %(name2)s axis.
%(name2)s.cumprod : Return cumulative product over %(name2)s axis.
"""

_cummin_examples = """\
Examples
--------
**Series**
>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64
By default, NA values are ignored.
>>> s.cummin()
0 2.0
1 NaN
2 2.0
3 -1.0
4 -1.0
dtype: float64
To include NA values in the operation, use ``skipna=False``
>>> s.cummin(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64
**DataFrame**
>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
By default, iterates over rows and finds the minimum
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.
>>> df.cummin()
A B
0 2.0 1.0
1 2.0 NaN
2 1.0 0.0
To iterate over columns and find the minimum in each row,
use ``axis=1``
>>> df.cummin(axis=1)
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
"""

_cumsum_examples = """\
Examples
--------
**Series**
>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64
By default, NA values are ignored.
>>> s.cumsum()
0 2.0
1 NaN
2 7.0
3 6.0
4 6.0
dtype: float64
To include NA values in the operation, use ``skipna=False``
>>> s.cumsum(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64
**DataFrame**
>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
By default, iterates over rows and finds the sum
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.
>>> df.cumsum()
A B
0 2.0 1.0
1 5.0 NaN
2 6.0 1.0
To iterate over columns and find the sum in each row,
use ``axis=1``
>>> df.cumsum(axis=1)
A B
0 2.0 3.0
1 3.0 NaN
2 1.0 1.0
"""

_cumprod_examples = """\
Examples
--------
**Series**
>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64
By default, NA values are ignored.
>>> s.cumprod()
0 2.0
1 NaN
2 10.0
3 -10.0
4 -0.0
dtype: float64
To include NA values in the operation, use ``skipna=False``
>>> s.cumprod(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64
**DataFrame**
>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
By default, iterates over rows and finds the product
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.
>>> df.cumprod()
A B
0 2.0 1.0
1 6.0 NaN
2 6.0 0.0
To iterate over columns and find the product in each row,
use ``axis=1``
>>> df.cumprod(axis=1)
A B
0 2.0 2.0
1 3.0 NaN
2 1.0 0.0
"""

_cummax_examples = """\
Examples
--------
**Series**
>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64
By default, NA values are ignored.
>>> s.cummax()
0 2.0
1 NaN
2 5.0
3 5.0
4 5.0
dtype: float64
To include NA values in the operation, use ``skipna=False``
>>> s.cummax(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64
**DataFrame**
>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
By default, iterates over rows and finds the maximum
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.
>>> df.cummax()
A B
0 2.0 1.0
1 3.0 NaN
2 3.0 1.0
To iterate over columns and find the maximum in each row,
use ``axis=1``
>>> df.cummax(axis=1)
A B
0 2.0 2.0
1 3.0 NaN
2 1.0 1.0
"""

_any_see_also = """\
Expand Down Expand Up @@ -8975,11 +9248,11 @@ def stat_func(self, axis=None, skipna=None, level=None, ddof=1,


def _make_cum_function(cls, name, name1, name2, axis_descr, desc,
accum_func, accum_func_name, mask_a, mask_b):
accum_func, accum_func_name, mask_a, mask_b, examples):
@Substitution(outname=name, desc=desc, name1=name1, name2=name2,
axis_descr=axis_descr, accum_func_name=accum_func_name)
@Appender("Return {0} over requested axis.".format(desc) +
_cnum_doc)
axis_descr=axis_descr, accum_func_name=accum_func_name,
examples=examples)
@Appender(_cnum_doc)
def cum_func(self, axis=None, skipna=True, *args, **kwargs):
skipna = nv.validate_cum_func_with_skipna(skipna, args, kwargs, name)
if axis is None:
Expand Down

0 comments on commit f668710

Please sign in to comment.