Skip to content

Commit

Permalink
ENH: Array Interface and Categorical internals Refactor (#19268)
Browse files Browse the repository at this point in the history
* REF: Define extension base classes

* Updated for comments

* removed take_nd
* Changed to_dense to return get_values
* Fixed docstrings, types
* Removed is_sparse

* Remove metaclasses from PeriodDtype and IntervalDtype

* Fixup form_blocks rebase

* Restore concat casting cat -> object

* Remove _slice, clarify semantics around __getitem__

* Document and use take.

* Clarify type, kind, init

* Remove base

* API: Remove unused __iter__ and get_values

* API: Implement repr and str

* Remove default value_counts for now

* Fixed merge conflicts

* Remove implementation of construct_from_string

* Example implementation of take

* Cleanup ExtensionBlock

* Pass through ndim

* Use series._values

* Removed repr, updated take doc

* Various cleanups

* Handle get_values, to_dense, is_view

* Docs

* Remove is_extension, is_bool

Remove inherited convert

* Sparse formatter

* Revert "Sparse formatter"

This reverts commit ab2f045.

* Unbox SparseSeries

* Added test for sparse consolidation

* Docs

* Moved to errors

* Handle classmethods, properties

* Use our AbstractMethodError

* Lint

* Cleanup

* Move ndim validation to a method.

* Try this

* Make ExtensionBlock._holder a property

Removed ExtensionBlock.__init__

* Make _holder a property for all

* Refactored validate_ndim

* fixup! Refactored validate_ndim

* lint
  • Loading branch information
TomAugspurger authored Feb 2, 2018
1 parent 69cd5fb commit e8620ab
Show file tree
Hide file tree
Showing 14 changed files with 803 additions and 103 deletions.
1 change: 1 addition & 0 deletions pandas/core/arrays/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
from .base import ExtensionArray # noqa
from .categorical import Categorical # noqa
247 changes: 247 additions & 0 deletions pandas/core/arrays/base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
"""An interface for extending pandas with custom arrays."""
from pandas.errors import AbstractMethodError

_not_implemented_message = "{} does not implement {}."


class ExtensionArray(object):
"""Abstract base class for custom 1-D array types.
pandas will recognize instances of this class as proper arrays
with a custom type and will not attempt to coerce them to objects. They
may be stored directly inside a :class:`DataFrame` or :class:`Series`.
Notes
-----
The interface includes the following abstract methods that must be
implemented by subclasses:
* __getitem__
* __len__
* dtype
* nbytes
* isna
* take
* copy
* _formatting_values
* _concat_same_type
Some additional methods are required to satisfy pandas' internal, private
block API.
* _concat_same_type
* _can_hold_na
This class does not inherit from 'abc.ABCMeta' for performance reasons.
Methods and properties required by the interface raise
``pandas.errors.AbstractMethodError`` and no ``register`` method is
provided for registering virtual subclasses.
ExtensionArrays are limited to 1 dimension.
They may be backed by none, one, or many NumPy ararys. For example,
``pandas.Categorical`` is an extension array backed by two arrays,
one for codes and one for categories. An array of IPv6 address may
be backed by a NumPy structured array with two fields, one for the
lower 64 bits and one for the upper 64 bits. Or they may be backed
by some other storage type, like Python lists. Pandas makes no
assumptions on how the data are stored, just that it can be converted
to a NumPy array.
Extension arrays should be able to be constructed with instances of
the class, i.e. ``ExtensionArray(extension_array)`` should return
an instance, not error.
Additionally, certain methods and interfaces are required for proper
this array to be properly stored inside a ``DataFrame`` or ``Series``.
"""
# ------------------------------------------------------------------------
# Must be a Sequence
# ------------------------------------------------------------------------
def __getitem__(self, item):
# type (Any) -> Any
"""Select a subset of self.
Parameters
----------
item : int, slice, or ndarray
* int: The position in 'self' to get.
* slice: A slice object, where 'start', 'stop', and 'step' are
integers or None
* ndarray: A 1-d boolean NumPy ndarray the same length as 'self'
Returns
-------
item : scalar or ExtensionArray
Notes
-----
For scalar ``item``, return a scalar value suitable for the array's
type. This should be an instance of ``self.dtype.type``.
For slice ``key``, return an instance of ``ExtensionArray``, even
if the slice is length 0 or 1.
For a boolean mask, return an instance of ``ExtensionArray``, filtered
to the values where ``item`` is True.
"""
raise AbstractMethodError(self)

def __setitem__(self, key, value):
# type: (Any, Any) -> None
raise NotImplementedError(_not_implemented_message.format(
type(self), '__setitem__')
)

def __len__(self):
"""Length of this array
Returns
-------
length : int
"""
# type: () -> int
raise AbstractMethodError(self)

# ------------------------------------------------------------------------
# Required attributes
# ------------------------------------------------------------------------
@property
def dtype(self):
# type: () -> ExtensionDtype
"""An instance of 'ExtensionDtype'."""
raise AbstractMethodError(self)

@property
def shape(self):
# type: () -> Tuple[int, ...]
return (len(self),)

@property
def ndim(self):
# type: () -> int
"""Extension Arrays are only allowed to be 1-dimensional."""
return 1

@property
def nbytes(self):
# type: () -> int
"""The number of bytes needed to store this object in memory.
If this is expensive to compute, return an approximate lower bound
on the number of bytes needed.
"""
raise AbstractMethodError(self)

# ------------------------------------------------------------------------
# Additional Methods
# ------------------------------------------------------------------------
def isna(self):
# type: () -> np.ndarray
"""Boolean NumPy array indicating if each value is missing.
This should return a 1-D array the same length as 'self'.
"""
raise AbstractMethodError(self)

# ------------------------------------------------------------------------
# Indexing methods
# ------------------------------------------------------------------------
def take(self, indexer, allow_fill=True, fill_value=None):
# type: (Sequence[int], bool, Optional[Any]) -> ExtensionArray
"""Take elements from an array.
Parameters
----------
indexer : sequence of integers
indices to be taken. -1 is used to indicate values
that are missing.
allow_fill : bool, default True
If False, indexer is assumed to contain no -1 values so no filling
will be done. This short-circuits computation of a mask. Result is
undefined if allow_fill == False and -1 is present in indexer.
fill_value : any, default None
Fill value to replace -1 values with. By default, this uses
the missing value sentinel for this type, ``self._fill_value``.
Notes
-----
This should follow pandas' semantics where -1 indicates missing values.
Positions where indexer is ``-1`` should be filled with the missing
value for this type.
This is called by ``Series.__getitem__``, ``.loc``, ``iloc``, when the
indexer is a sequence of values.
Examples
--------
Suppose the extension array somehow backed by a NumPy structured array
and that the underlying structured array is stored as ``self.data``.
Then ``take`` may be written as
.. code-block:: python
def take(self, indexer, allow_fill=True, fill_value=None):
mask = indexer == -1
result = self.data.take(indexer)
result[mask] = self._fill_value
return type(self)(result)
"""
raise AbstractMethodError(self)

def copy(self, deep=False):
# type: (bool) -> ExtensionArray
"""Return a copy of the array.
Parameters
----------
deep : bool, default False
Also copy the underlying data backing this array.
Returns
-------
ExtensionArray
"""
raise AbstractMethodError(self)

# ------------------------------------------------------------------------
# Block-related methods
# ------------------------------------------------------------------------
@property
def _fill_value(self):
# type: () -> Any
"""The missing value for this type, e.g. np.nan"""
return None

def _formatting_values(self):
# type: () -> np.ndarray
# At the moment, this has to be an array since we use result.dtype
"""An array of values to be printed in, e.g. the Series repr"""
raise AbstractMethodError(self)

@classmethod
def _concat_same_type(cls, to_concat):
# type: (Sequence[ExtensionArray]) -> ExtensionArray
"""Concatenate multiple array
Parameters
----------
to_concat : sequence of this type
Returns
-------
ExtensionArray
"""
raise AbstractMethodError(cls)

def _can_hold_na(self):
# type: () -> bool
"""Whether your array can hold missing values. True by default.
Notes
-----
Setting this to false will optimize some operations like fillna.
"""
return True
18 changes: 17 additions & 1 deletion pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,8 @@
from pandas.util._validators import validate_bool_kwarg
from pandas.core.config import get_option

from .base import ExtensionArray


def _cat_compare_op(op):
def f(self, other):
Expand Down Expand Up @@ -148,7 +150,7 @@ def _maybe_to_categorical(array):
"""


class Categorical(PandasObject):
class Categorical(ExtensionArray, PandasObject):
"""
Represents a categorical variable in classic R / S-plus fashion
Expand Down Expand Up @@ -2130,6 +2132,20 @@ def repeat(self, repeats, *args, **kwargs):
return self._constructor(values=codes, categories=self.categories,
ordered=self.ordered, fastpath=True)

# Implement the ExtensionArray interface
@property
def _can_hold_na(self):
return True

@classmethod
def _concat_same_type(self, to_concat):
from pandas.core.dtypes.concat import _concat_categorical

return _concat_categorical(to_concat)

def _formatting_values(self):
return self

# The Series.cat accessor


Expand Down
16 changes: 2 additions & 14 deletions pandas/core/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@

# compat
from pandas.errors import ( # noqa
PerformanceWarning, UnsupportedFunctionCall, UnsortedIndexError)
PerformanceWarning, UnsupportedFunctionCall, UnsortedIndexError,
AbstractMethodError)

# back-compat of public API
# deprecate these functions
Expand Down Expand Up @@ -88,19 +89,6 @@ class SettingWithCopyWarning(Warning):
pass


class AbstractMethodError(NotImplementedError):
"""Raise this error instead of NotImplementedError for abstract methods
while keeping compatibility with Python 2 and Python 3.
"""

def __init__(self, class_instance):
self.class_instance = class_instance

def __str__(self):
msg = "This method must be defined in the concrete class of {name}"
return (msg.format(name=self.class_instance.__class__.__name__))


def flatten(l):
"""Flatten an arbitrarily nested sequence.
Expand Down
Loading

0 comments on commit e8620ab

Please sign in to comment.