-
-
Notifications
You must be signed in to change notification settings - Fork 18.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
TST: split up tests/indexing/test_indexing a bit
Author: Jeff Reback <[email protected]> Closes #15367 from jreback/indexing and squashes the following commits: 15e6010 [Jeff Reback] pep 3a12fdd [Jeff Reback] add panel 5605b2b [Jeff Reback] add chaining and caching 05f6f40 [Jeff Reback] split out datetime d6be34f [Jeff Reback] TST: split up tests/indexing/test_indexing a bit
- Loading branch information
Showing
8 changed files
with
2,215 additions
and
2,175 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
""" common utilities """ | ||
|
||
|
||
def _mklbl(prefix, n): | ||
return ["%s%s" % (prefix, i) for i in range(n)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,358 @@ | ||
import numpy as np | ||
import pandas as pd | ||
from pandas.core import common as com | ||
from pandas import (compat, DataFrame, option_context, | ||
Series, MultiIndex, date_range, Timestamp) | ||
from pandas.util import testing as tm | ||
|
||
|
||
class TestCaching(tm.TestCase): | ||
|
||
def test_slice_consolidate_invalidate_item_cache(self): | ||
|
||
# this is chained assignment, but will 'work' | ||
with option_context('chained_assignment', None): | ||
|
||
# #3970 | ||
df = DataFrame({"aa": compat.lrange(5), "bb": [2.2] * 5}) | ||
|
||
# Creates a second float block | ||
df["cc"] = 0.0 | ||
|
||
# caches a reference to the 'bb' series | ||
df["bb"] | ||
|
||
# repr machinery triggers consolidation | ||
repr(df) | ||
|
||
# Assignment to wrong series | ||
df['bb'].iloc[0] = 0.17 | ||
df._clear_item_cache() | ||
self.assertAlmostEqual(df['bb'][0], 0.17) | ||
|
||
def test_setitem_cache_updating(self): | ||
# GH 5424 | ||
cont = ['one', 'two', 'three', 'four', 'five', 'six', 'seven'] | ||
|
||
for do_ref in [False, False]: | ||
df = DataFrame({'a': cont, | ||
"b": cont[3:] + cont[:3], | ||
'c': np.arange(7)}) | ||
|
||
# ref the cache | ||
if do_ref: | ||
df.ix[0, "c"] | ||
|
||
# set it | ||
df.ix[7, 'c'] = 1 | ||
|
||
self.assertEqual(df.ix[0, 'c'], 0.0) | ||
self.assertEqual(df.ix[7, 'c'], 1.0) | ||
|
||
# GH 7084 | ||
# not updating cache on series setting with slices | ||
expected = DataFrame({'A': [600, 600, 600]}, | ||
index=date_range('5/7/2014', '5/9/2014')) | ||
out = DataFrame({'A': [0, 0, 0]}, | ||
index=date_range('5/7/2014', '5/9/2014')) | ||
df = DataFrame({'C': ['A', 'A', 'A'], 'D': [100, 200, 300]}) | ||
|
||
# loop through df to update out | ||
six = Timestamp('5/7/2014') | ||
eix = Timestamp('5/9/2014') | ||
for ix, row in df.iterrows(): | ||
out.loc[six:eix, row['C']] = out.loc[six:eix, row['C']] + row['D'] | ||
|
||
tm.assert_frame_equal(out, expected) | ||
tm.assert_series_equal(out['A'], expected['A']) | ||
|
||
# try via a chain indexing | ||
# this actually works | ||
out = DataFrame({'A': [0, 0, 0]}, | ||
index=date_range('5/7/2014', '5/9/2014')) | ||
for ix, row in df.iterrows(): | ||
v = out[row['C']][six:eix] + row['D'] | ||
out[row['C']][six:eix] = v | ||
|
||
tm.assert_frame_equal(out, expected) | ||
tm.assert_series_equal(out['A'], expected['A']) | ||
|
||
out = DataFrame({'A': [0, 0, 0]}, | ||
index=date_range('5/7/2014', '5/9/2014')) | ||
for ix, row in df.iterrows(): | ||
out.loc[six:eix, row['C']] += row['D'] | ||
|
||
tm.assert_frame_equal(out, expected) | ||
tm.assert_series_equal(out['A'], expected['A']) | ||
|
||
|
||
class TestChaining(tm.TestCase): | ||
|
||
def test_setitem_chained_setfault(self): | ||
|
||
# GH6026 | ||
# setfaults under numpy 1.7.1 (ok on 1.8) | ||
data = ['right', 'left', 'left', 'left', 'right', 'left', 'timeout'] | ||
mdata = ['right', 'left', 'left', 'left', 'right', 'left', 'none'] | ||
|
||
df = DataFrame({'response': np.array(data)}) | ||
mask = df.response == 'timeout' | ||
df.response[mask] = 'none' | ||
tm.assert_frame_equal(df, DataFrame({'response': mdata})) | ||
|
||
recarray = np.rec.fromarrays([data], names=['response']) | ||
df = DataFrame(recarray) | ||
mask = df.response == 'timeout' | ||
df.response[mask] = 'none' | ||
tm.assert_frame_equal(df, DataFrame({'response': mdata})) | ||
|
||
df = DataFrame({'response': data, 'response1': data}) | ||
mask = df.response == 'timeout' | ||
df.response[mask] = 'none' | ||
tm.assert_frame_equal(df, DataFrame({'response': mdata, | ||
'response1': data})) | ||
|
||
# GH 6056 | ||
expected = DataFrame(dict(A=[np.nan, 'bar', 'bah', 'foo', 'bar'])) | ||
df = DataFrame(dict(A=np.array(['foo', 'bar', 'bah', 'foo', 'bar']))) | ||
df['A'].iloc[0] = np.nan | ||
result = df.head() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
df = DataFrame(dict(A=np.array(['foo', 'bar', 'bah', 'foo', 'bar']))) | ||
df.A.iloc[0] = np.nan | ||
result = df.head() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_detect_chained_assignment(self): | ||
|
||
pd.set_option('chained_assignment', 'raise') | ||
|
||
# work with the chain | ||
expected = DataFrame([[-5, 1], [-6, 3]], columns=list('AB')) | ||
df = DataFrame(np.arange(4).reshape(2, 2), | ||
columns=list('AB'), dtype='int64') | ||
self.assertIsNone(df.is_copy) | ||
df['A'][0] = -5 | ||
df['A'][1] = -6 | ||
tm.assert_frame_equal(df, expected) | ||
|
||
# test with the chaining | ||
df = DataFrame({'A': Series(range(2), dtype='int64'), | ||
'B': np.array(np.arange(2, 4), dtype=np.float64)}) | ||
self.assertIsNone(df.is_copy) | ||
|
||
def f(): | ||
df['A'][0] = -5 | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
def f(): | ||
df['A'][1] = np.nan | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
self.assertIsNone(df['A'].is_copy) | ||
|
||
# using a copy (the chain), fails | ||
df = DataFrame({'A': Series(range(2), dtype='int64'), | ||
'B': np.array(np.arange(2, 4), dtype=np.float64)}) | ||
|
||
def f(): | ||
df.loc[0]['A'] = -5 | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
# doc example | ||
df = DataFrame({'a': ['one', 'one', 'two', 'three', | ||
'two', 'one', 'six'], | ||
'c': Series(range(7), dtype='int64')}) | ||
self.assertIsNone(df.is_copy) | ||
expected = DataFrame({'a': ['one', 'one', 'two', 'three', | ||
'two', 'one', 'six'], | ||
'c': [42, 42, 2, 3, 4, 42, 6]}) | ||
|
||
def f(): | ||
indexer = df.a.str.startswith('o') | ||
df[indexer]['c'] = 42 | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
expected = DataFrame({'A': [111, 'bbb', 'ccc'], 'B': [1, 2, 3]}) | ||
df = DataFrame({'A': ['aaa', 'bbb', 'ccc'], 'B': [1, 2, 3]}) | ||
|
||
def f(): | ||
df['A'][0] = 111 | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
def f(): | ||
df.loc[0]['A'] = 111 | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
df.loc[0, 'A'] = 111 | ||
tm.assert_frame_equal(df, expected) | ||
|
||
# make sure that is_copy is picked up reconstruction | ||
# GH5475 | ||
df = DataFrame({"A": [1, 2]}) | ||
self.assertIsNone(df.is_copy) | ||
with tm.ensure_clean('__tmp__pickle') as path: | ||
df.to_pickle(path) | ||
df2 = pd.read_pickle(path) | ||
df2["B"] = df2["A"] | ||
df2["B"] = df2["A"] | ||
|
||
# a suprious raise as we are setting the entire column here | ||
# GH5597 | ||
from string import ascii_letters as letters | ||
|
||
def random_text(nobs=100): | ||
df = [] | ||
for i in range(nobs): | ||
idx = np.random.randint(len(letters), size=2) | ||
idx.sort() | ||
df.append([letters[idx[0]:idx[1]]]) | ||
|
||
return DataFrame(df, columns=['letters']) | ||
|
||
df = random_text(100000) | ||
|
||
# always a copy | ||
x = df.iloc[[0, 1, 2]] | ||
self.assertIsNotNone(x.is_copy) | ||
x = df.iloc[[0, 1, 2, 4]] | ||
self.assertIsNotNone(x.is_copy) | ||
|
||
# explicity copy | ||
indexer = df.letters.apply(lambda x: len(x) > 10) | ||
df = df.ix[indexer].copy() | ||
self.assertIsNone(df.is_copy) | ||
df['letters'] = df['letters'].apply(str.lower) | ||
|
||
# implicity take | ||
df = random_text(100000) | ||
indexer = df.letters.apply(lambda x: len(x) > 10) | ||
df = df.ix[indexer] | ||
self.assertIsNotNone(df.is_copy) | ||
df['letters'] = df['letters'].apply(str.lower) | ||
|
||
# implicity take 2 | ||
df = random_text(100000) | ||
indexer = df.letters.apply(lambda x: len(x) > 10) | ||
df = df.ix[indexer] | ||
self.assertIsNotNone(df.is_copy) | ||
df.loc[:, 'letters'] = df['letters'].apply(str.lower) | ||
|
||
# should be ok even though it's a copy! | ||
self.assertIsNone(df.is_copy) | ||
df['letters'] = df['letters'].apply(str.lower) | ||
self.assertIsNone(df.is_copy) | ||
|
||
df = random_text(100000) | ||
indexer = df.letters.apply(lambda x: len(x) > 10) | ||
df.ix[indexer, 'letters'] = df.ix[indexer, 'letters'].apply(str.lower) | ||
|
||
# an identical take, so no copy | ||
df = DataFrame({'a': [1]}).dropna() | ||
self.assertIsNone(df.is_copy) | ||
df['a'] += 1 | ||
|
||
# inplace ops | ||
# original from: | ||
# http://stackoverflow.com/questions/20508968/series-fillna-in-a-multiindex-dataframe-does-not-fill-is-this-a-bug | ||
a = [12, 23] | ||
b = [123, None] | ||
c = [1234, 2345] | ||
d = [12345, 23456] | ||
tuples = [('eyes', 'left'), ('eyes', 'right'), ('ears', 'left'), | ||
('ears', 'right')] | ||
events = {('eyes', 'left'): a, | ||
('eyes', 'right'): b, | ||
('ears', 'left'): c, | ||
('ears', 'right'): d} | ||
multiind = MultiIndex.from_tuples(tuples, names=['part', 'side']) | ||
zed = DataFrame(events, index=['a', 'b'], columns=multiind) | ||
|
||
def f(): | ||
zed['eyes']['right'].fillna(value=555, inplace=True) | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
df = DataFrame(np.random.randn(10, 4)) | ||
s = df.iloc[:, 0].sort_values() | ||
tm.assert_series_equal(s, df.iloc[:, 0].sort_values()) | ||
tm.assert_series_equal(s, df[0].sort_values()) | ||
|
||
# false positives GH6025 | ||
df = DataFrame({'column1': ['a', 'a', 'a'], 'column2': [4, 8, 9]}) | ||
str(df) | ||
df['column1'] = df['column1'] + 'b' | ||
str(df) | ||
df = df[df['column2'] != 8] | ||
str(df) | ||
df['column1'] = df['column1'] + 'c' | ||
str(df) | ||
|
||
# from SO: | ||
# http://stackoverflow.com/questions/24054495/potential-bug-setting-value-for-undefined-column-using-iloc | ||
df = DataFrame(np.arange(0, 9), columns=['count']) | ||
df['group'] = 'b' | ||
|
||
def f(): | ||
df.iloc[0:5]['group'] = 'a' | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
# mixed type setting | ||
# same dtype & changing dtype | ||
df = DataFrame(dict(A=date_range('20130101', periods=5), | ||
B=np.random.randn(5), | ||
C=np.arange(5, dtype='int64'), | ||
D=list('abcde'))) | ||
|
||
def f(): | ||
df.ix[2]['D'] = 'foo' | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
def f(): | ||
df.ix[2]['C'] = 'foo' | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
def f(): | ||
df['C'][2] = 'foo' | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
def test_setting_with_copy_bug(self): | ||
|
||
# operating on a copy | ||
df = pd.DataFrame({'a': list(range(4)), | ||
'b': list('ab..'), | ||
'c': ['a', 'b', np.nan, 'd']}) | ||
mask = pd.isnull(df.c) | ||
|
||
def f(): | ||
df[['c']][mask] = df[['b']][mask] | ||
|
||
self.assertRaises(com.SettingWithCopyError, f) | ||
|
||
# invalid warning as we are returning a new object | ||
# GH 8730 | ||
df1 = DataFrame({'x': Series(['a', 'b', 'c']), | ||
'y': Series(['d', 'e', 'f'])}) | ||
df2 = df1[['x']] | ||
|
||
# this should not raise | ||
df2['y'] = ['g', 'h', 'i'] | ||
|
||
def test_detect_chained_assignment_warnings(self): | ||
|
||
# warnings | ||
with option_context('chained_assignment', 'warn'): | ||
df = DataFrame({'A': ['aaa', 'bbb', 'ccc'], 'B': [1, 2, 3]}) | ||
with tm.assert_produces_warning( | ||
expected_warning=com.SettingWithCopyWarning): | ||
df.loc[0]['A'] = 111 |
Oops, something went wrong.