Skip to content

Commit

Permalink
Revert "CI: workaround numpydev bug (#29433)" (#29553)
Browse files Browse the repository at this point in the history
  • Loading branch information
TomAugspurger authored and jreback committed Nov 25, 2019
1 parent d8c6610 commit 2e38d4e
Show file tree
Hide file tree
Showing 6 changed files with 177 additions and 13 deletions.
17 changes: 7 additions & 10 deletions ci/azure/posix.yml
Original file line number Diff line number Diff line change
Expand Up @@ -44,16 +44,13 @@ jobs:
PATTERN: "not slow and not network"
LOCALE_OVERRIDE: "zh_CN.UTF-8"

# https://github.com/pandas-dev/pandas/issues/29432
# py37_np_dev:
# ENV_FILE: ci/deps/azure-37-numpydev.yaml
# CONDA_PY: "37"
# PATTERN: "not slow and not network"
# TEST_ARGS: "-W error"
# PANDAS_TESTING_MODE: "deprecate"
# EXTRA_APT: "xsel"
# # TODO:
# continueOnError: true
py37_np_dev:
ENV_FILE: ci/deps/azure-37-numpydev.yaml
CONDA_PY: "37"
PATTERN: "not slow and not network"
TEST_ARGS: "-W error"
PANDAS_TESTING_MODE: "deprecate"
EXTRA_APT: "xsel"

steps:
- script: |
Expand Down
118 changes: 118 additions & 0 deletions pandas/core/dtypes/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -1191,6 +1191,124 @@ def _is_unorderable_exception(e: TypeError) -> bool:
return "'>' not supported between instances of" in str(e)


# This exists to silence numpy deprecation warnings, see GH#29553
def is_numeric_v_string_like(a, b):
"""
Check if we are comparing a string-like object to a numeric ndarray.
NumPy doesn't like to compare such objects, especially numeric arrays
and scalar string-likes.
Parameters
----------
a : array-like, scalar
The first object to check.
b : array-like, scalar
The second object to check.
Returns
-------
boolean
Whether we return a comparing a string-like object to a numeric array.
Examples
--------
>>> is_numeric_v_string_like(1, 1)
False
>>> is_numeric_v_string_like("foo", "foo")
False
>>> is_numeric_v_string_like(1, "foo") # non-array numeric
False
>>> is_numeric_v_string_like(np.array([1]), "foo")
True
>>> is_numeric_v_string_like("foo", np.array([1])) # symmetric check
True
>>> is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"]))
True
>>> is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2]))
True
>>> is_numeric_v_string_like(np.array([1]), np.array([2]))
False
>>> is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"]))
False
"""

is_a_array = isinstance(a, np.ndarray)
is_b_array = isinstance(b, np.ndarray)

is_a_numeric_array = is_a_array and is_numeric_dtype(a)
is_b_numeric_array = is_b_array and is_numeric_dtype(b)
is_a_string_array = is_a_array and is_string_like_dtype(a)
is_b_string_array = is_b_array and is_string_like_dtype(b)

is_a_scalar_string_like = not is_a_array and isinstance(a, str)
is_b_scalar_string_like = not is_b_array and isinstance(b, str)

return (
(is_a_numeric_array and is_b_scalar_string_like)
or (is_b_numeric_array and is_a_scalar_string_like)
or (is_a_numeric_array and is_b_string_array)
or (is_b_numeric_array and is_a_string_array)
)


# This exists to silence numpy deprecation warnings, see GH#29553
def is_datetimelike_v_numeric(a, b):
"""
Check if we are comparing a datetime-like object to a numeric object.
By "numeric," we mean an object that is either of an int or float dtype.
Parameters
----------
a : array-like, scalar
The first object to check.
b : array-like, scalar
The second object to check.
Returns
-------
boolean
Whether we return a comparing a datetime-like to a numeric object.
Examples
--------
>>> dt = np.datetime64(pd.datetime(2017, 1, 1))
>>>
>>> is_datetimelike_v_numeric(1, 1)
False
>>> is_datetimelike_v_numeric(dt, dt)
False
>>> is_datetimelike_v_numeric(1, dt)
True
>>> is_datetimelike_v_numeric(dt, 1) # symmetric check
True
>>> is_datetimelike_v_numeric(np.array([dt]), 1)
True
>>> is_datetimelike_v_numeric(np.array([1]), dt)
True
>>> is_datetimelike_v_numeric(np.array([dt]), np.array([1]))
True
>>> is_datetimelike_v_numeric(np.array([1]), np.array([2]))
False
>>> is_datetimelike_v_numeric(np.array([dt]), np.array([dt]))
False
"""

if not hasattr(a, "dtype"):
a = np.asarray(a)
if not hasattr(b, "dtype"):
b = np.asarray(b)

def is_numeric(x):
"""
Check if an object has a numeric dtype (i.e. integer or float).
"""
return is_integer_dtype(x) or is_float_dtype(x)

return (needs_i8_conversion(a) and is_numeric(b)) or (
needs_i8_conversion(b) and is_numeric(a)
)


def needs_i8_conversion(arr_or_dtype) -> bool:
"""
Check whether the array or dtype should be converted to int64.
Expand Down
5 changes: 5 additions & 0 deletions pandas/core/dtypes/missing.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
is_complex_dtype,
is_datetime64_dtype,
is_datetime64tz_dtype,
is_datetimelike_v_numeric,
is_dtype_equal,
is_extension_array_dtype,
is_float_dtype,
Expand Down Expand Up @@ -465,6 +466,10 @@ def array_equivalent(left, right, strict_nan: bool = False) -> bool:
return True
return ((left == right) | (isna(left) & isna(right))).all()

elif is_datetimelike_v_numeric(left, right):
# GH#29553 avoid numpy deprecation warning
return False

elif needs_i8_conversion(left) or needs_i8_conversion(right):
# datetime64, timedelta64, Period
if not is_dtype_equal(left.dtype, right.dtype):
Expand Down
8 changes: 7 additions & 1 deletion pandas/core/internals/managers.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,10 @@
)
from pandas.core.dtypes.common import (
_NS_DTYPE,
is_datetimelike_v_numeric,
is_extension_array_dtype,
is_list_like,
is_numeric_v_string_like,
is_scalar,
is_sparse,
)
Expand Down Expand Up @@ -1917,7 +1919,11 @@ def _compare_or_regex_search(a, b, regex=False):
is_a_array = isinstance(a, np.ndarray)
is_b_array = isinstance(b, np.ndarray)

result = op(a)
if is_datetimelike_v_numeric(a, b) or is_numeric_v_string_like(a, b):
# GH#29553 avoid deprecation warnings from numpy
result = False
else:
result = op(a)

if is_scalar(result) and (is_a_array or is_b_array):
type_names = [type(a).__name__, type(b).__name__]
Expand Down
14 changes: 12 additions & 2 deletions pandas/core/missing.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
"""
Routines for filling missing data.
"""

import numpy as np

from pandas._libs import algos, lib
Expand All @@ -12,6 +13,7 @@
is_datetime64_dtype,
is_datetime64tz_dtype,
is_integer_dtype,
is_numeric_v_string_like,
is_scalar,
is_timedelta64_dtype,
needs_i8_conversion,
Expand All @@ -38,14 +40,22 @@ def mask_missing(arr, values_to_mask):
mask = None
for x in nonna:
if mask is None:
mask = arr == x
if is_numeric_v_string_like(arr, x):
# GH#29553 prevent numpy deprecation warnings
mask = False
else:
mask = arr == x

# if x is a string and arr is not, then we get False and we must
# expand the mask to size arr.shape
if is_scalar(mask):
mask = np.zeros(arr.shape, dtype=bool)
else:
mask |= arr == x
if is_numeric_v_string_like(arr, x):
# GH#29553 prevent numpy deprecation warnings
mask |= False
else:
mask |= arr == x

if na_mask.any():
if mask is None:
Expand Down
28 changes: 28 additions & 0 deletions pandas/tests/dtypes/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -474,6 +474,34 @@ def test_is_datetime_or_timedelta_dtype():
assert com.is_datetime_or_timedelta_dtype(np.array([], dtype=np.datetime64))


def test_is_numeric_v_string_like():
assert not com.is_numeric_v_string_like(1, 1)
assert not com.is_numeric_v_string_like(1, "foo")
assert not com.is_numeric_v_string_like("foo", "foo")
assert not com.is_numeric_v_string_like(np.array([1]), np.array([2]))
assert not com.is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"]))

assert com.is_numeric_v_string_like(np.array([1]), "foo")
assert com.is_numeric_v_string_like("foo", np.array([1]))
assert com.is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"]))
assert com.is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2]))


def test_is_datetimelike_v_numeric():
dt = np.datetime64(pd.datetime(2017, 1, 1))

assert not com.is_datetimelike_v_numeric(1, 1)
assert not com.is_datetimelike_v_numeric(dt, dt)
assert not com.is_datetimelike_v_numeric(np.array([1]), np.array([2]))
assert not com.is_datetimelike_v_numeric(np.array([dt]), np.array([dt]))

assert com.is_datetimelike_v_numeric(1, dt)
assert com.is_datetimelike_v_numeric(1, dt)
assert com.is_datetimelike_v_numeric(np.array([dt]), 1)
assert com.is_datetimelike_v_numeric(np.array([1]), dt)
assert com.is_datetimelike_v_numeric(np.array([dt]), np.array([1]))


def test_needs_i8_conversion():
assert not com.needs_i8_conversion(str)
assert not com.needs_i8_conversion(np.int64)
Expand Down

0 comments on commit 2e38d4e

Please sign in to comment.