Skip to content

Commit

Permalink
Refine Guardrails README and update model (opea-project#393)
Browse files Browse the repository at this point in the history
* Refine Guardrails README and update model

Signed-off-by: lvliang-intel <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* upate model

Signed-off-by: lvliang-intel <[email protected]>

* revert back to guard-2 model

Signed-off-by: lvliang-intel <[email protected]>

* update readme

Signed-off-by: lvliang-intel <[email protected]>

* fix ci issue

Signed-off-by: lvliang-intel <[email protected]>

---------

Signed-off-by: lvliang-intel <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
lvliang-intel and pre-commit-ci[bot] authored Aug 6, 2024
1 parent c1887ed commit 7749ce3
Show file tree
Hide file tree
Showing 9 changed files with 138 additions and 130 deletions.
126 changes: 7 additions & 119 deletions comps/guardrails/README.md
Original file line number Diff line number Diff line change
@@ -1,122 +1,10 @@
# Guardrails Microservice
# Trust and Safety with LLM

To fortify AI initiatives in production, this microservice introduces guardrails designed to encapsulate LLMs, ensuring the enforcement of responsible behavior. With this microservice, you can secure model inputs and outputs, hastening your journey to production and democratizing AI within your organization, building Trustworthy, Safe, and Secure LLM-based Applications.
The Guardrails service enhances the security of LLM-based applications by offering a suite of microservices designed to ensure trustworthiness, safety, and security.

These guardrails actively prevent the model from interacting with unsafe content, promptly signaling its inability to assist with such requests. With these protective measures in place, you can expedite production timelines and alleviate concerns about unpredictable model responses.
| MicroService | Description |
| ------------------------------------------ | ------------------------------------------------------------------------------------------ |
| [Llama Guard](./llama_guard/README.md) | Provides guardrails for inputs and outputs to ensure safe interactions |
| [PII Detection](./pii_detection/README.md) | Detects Personally Identifiable Information (PII) and Business Sensitive Information (BSI) |

The Guardrails Microservice now offers two primary types of guardrails:

- Input Guardrails: These are applied to user inputs. An input guardrail can either reject the input, halting further processing.
- Output Guardrails: These are applied to outputs generated by the LLM. An output guardrail can reject the output, preventing it from being returned to the user.

We offer content moderation support utilizing Meta's [Llama Guard](https://huggingface.co/meta-llama/LlamaGuard-7b) model.

Any content that is detected in the following categories is determined as unsafe:

- Violence and Hate
- Sexual Content
- Criminal Planning
- Guns and Illegal Weapons
- Regulated or Controlled Substances
- Suicide & Self Harm

# 🚀1. Start Microservice with Python (Option 1)

To start the Guardrails microservice, you need to install python packages first.

## 1.1 Install Requirements

```bash
pip install -r requirements.txt
```

## 1.2 Start TGI Gaudi Service

```bash
export HF_TOKEN=${your_hf_api_token}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=${your_langchain_api_key}
export LANGCHAIN_PROJECT="opea/gaurdrails"
volume=$PWD/data
model_id="meta-llama/Meta-Llama-Guard-2-8B"
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker run -p 8088:80 -v $volume:/data --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host -e HTTPS_PROXY=$https_proxy -e HTTP_PROXY=$https_proxy -e HF_TOKEN=$HF_TOKEN ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id $model_id --max-input-length 1024 --max-total-tokens 2048
```

## 1.3 Verify the TGI Gaudi Service

```bash
curl 127.0.0.1:8088/generate \
-X POST \
-d '{"inputs":"How do you buy a tiger in the US?","parameters":{"max_new_tokens":32}}' \
-H 'Content-Type: application/json'
```

## 1.4 Start Guardrails Service

Optional: If you have deployed a Guardrails model with TGI Gaudi Service other than default model (i.e., `meta-llama/LlamaGuard-7b`) [from section 1.2](## 1.2 Start TGI Gaudi Service), you will need to add the eviornment variable `SAFETY_GUARD_MODEL_ID` containing the model id. For example, the following informs the Guardrails Service the deployed model used LlamaGuard2:

```bash
export SAFETY_GUARD_MODEL_ID="meta-llama/Meta-Llama-Guard-2-8B"
```

```bash
export SAFETY_GUARD_ENDPOINT="http://${your_ip}:8088"
python langchain/guardrails_tgi_gaudi.py
```

# 🚀2. Start Microservice with Docker (Option 2)

If you start an Guardrails microservice with docker, the `docker_compose_guardrails.yaml` file will automatically start a TGI gaudi service with docker.

## 2.1 Setup Environment Variables

In order to start TGI and LLM services, you need to setup the following environment variables first.

```bash
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export SAFETY_GUARD_ENDPOINT="http://${your_ip}:8088"
export LLM_MODEL_ID=${your_hf_llm_model}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=${your_langchain_api_key}
export LANGCHAIN_PROJECT="opea/gen-ai-comps:gaurdrails"
```

## 2.2 Build Docker Image

```bash
cd ../../
docker build -t opea/guardrails-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/guardrails/langchain/docker/Dockerfile .
```

## 2.3 Run Docker with CLI

```bash
docker run -d --name="guardrails-tgi-server" -p 9090:9090 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e SAFETY_GUARD_ENDPOINT=$SAFETY_GUARD_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN opea/guardrails-tgi:latest
```

## 2.4 Run Docker with Docker Compose

```bash
cd langchain/docker
docker compose -f docker_compose_guardrails.yaml up -d
```

# 🚀3. Consume Guardrails Service

## 3.1 Check Service Status

```bash
curl http://localhost:9090/v1/health_check\
-X GET \
-H 'Content-Type: application/json'
```

## 3.2 Consume Guardrails Service

```bash
curl http://localhost:9090/v1/guardrails\
-X POST \
-d '{"text":"How do you buy a tiger in the US?","parameters":{"max_new_tokens":32}}' \
-H 'Content-Type: application/json'
```
Additional safety-related microservices will be available soon.
Empty file.
119 changes: 119 additions & 0 deletions comps/guardrails/llama_guard/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
# Guardrails Microservice

To fortify AI initiatives in production, this microservice introduces guardrails designed to encapsulate LLMs, ensuring the enforcement of responsible behavior. With this microservice, you can secure model inputs and outputs, hastening your journey to production and democratizing AI within your organization, building Trustworthy, Safe, and Secure LLM-based Applications.

These guardrails actively prevent the model from interacting with unsafe content, promptly signaling its inability to assist with such requests. With these protective measures in place, you can expedite production timelines and alleviate concerns about unpredictable model responses.

The Guardrails Microservice now offers two primary types of guardrails:

- Input Guardrails: These are applied to user inputs. An input guardrail can either reject the input, halting further processing.
- Output Guardrails: These are applied to outputs generated by the LLM. An output guardrail can reject the output, preventing it from being returned to the user.

We offer content moderation support utilizing Meta's [Llama Guard](https://huggingface.co/meta-llama/Meta-Llama-Guard-2-8B) model.

Any content that is detected in the following categories is determined as unsafe:

- Violence and Hate
- Sexual Content
- Criminal Planning
- Guns and Illegal Weapons
- Regulated or Controlled Substances
- Suicide & Self Harm

# 🚀1. Start Microservice with Python (Option 1)

To start the Guardrails microservice, you need to install python packages first.

## 1.1 Install Requirements

```bash
pip install -r requirements.txt
```

## 1.2 Start TGI Gaudi Service

```bash
export HF_TOKEN=${your_hf_api_token}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=${your_langchain_api_key}
export LANGCHAIN_PROJECT="opea/gaurdrails"
volume=$PWD/data
model_id="meta-llama/Meta-Llama-Guard-2-8B"
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker run -p 8088:80 -v $volume:/data --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host -e HTTPS_PROXY=$https_proxy -e HTTP_PROXY=$https_proxy -e HF_TOKEN=$HF_TOKEN ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id $model_id --max-input-length 1024 --max-total-tokens 2048
```

## 1.3 Verify the TGI Gaudi Service

```bash
curl 127.0.0.1:8088/generate \
-X POST \
-d '{"inputs":"How do you buy a tiger in the US?","parameters":{"max_new_tokens":32}}' \
-H 'Content-Type: application/json'
```

## 1.4 Start Guardrails Service

Optional: If you have deployed a Guardrails model with TGI Gaudi Service other than default model (i.e., `meta-llama/Meta-Llama-Guard-2-8B`) [from section 1.2](## 1.2 Start TGI Gaudi Service), you will need to add the eviornment variable `SAFETY_GUARD_MODEL_ID` containing the model id. For example, the following informs the Guardrails Service the deployed model used LlamaGuard2:

```bash
export SAFETY_GUARD_MODEL_ID="meta-llama/Meta-Llama-Guard-2-8B"
```

```bash
export SAFETY_GUARD_ENDPOINT="http://${your_ip}:8088"
python langchain/guardrails_tgi.py
```

# 🚀2. Start Microservice with Docker (Option 2)

If you start an Guardrails microservice with docker, the `docker_compose_guardrails.yaml` file will automatically start a TGI gaudi service with docker.

## 2.1 Setup Environment Variables

In order to start TGI and LLM services, you need to setup the following environment variables first.

```bash
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export SAFETY_GUARD_ENDPOINT="http://${your_ip}:8088"
export LLM_MODEL_ID=${your_hf_llm_model}
```

## 2.2 Build Docker Image

```bash
cd ../../
docker build -t opea/guardrails-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/guardrails/llama_guard/docker/Dockerfile .
```

## 2.3 Run Docker with CLI

```bash
docker run -d --name="guardrails-tgi-server" -p 9090:9090 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e SAFETY_GUARD_ENDPOINT=$SAFETY_GUARD_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN opea/guardrails-tgi:latest
```

## 2.4 Run Docker with Docker Compose

```bash
cd langchain/docker
docker compose -f docker_compose_guardrails.yaml up -d
```

# 🚀3. Consume Guardrails Service

## 3.1 Check Service Status

```bash
curl http://localhost:9090/v1/health_check\
-X GET \
-H 'Content-Type: application/json'
```

## 3.2 Consume Guardrails Service

```bash
curl http://localhost:9090/v1/guardrails\
-X POST \
-d '{"text":"How do you buy a tiger in the US?","parameters":{"max_new_tokens":32}}' \
-H 'Content-Type: application/json'
```
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,10 @@ COPY comps /home/user/comps

RUN pip install --no-cache-dir --upgrade pip && \
if [ ${ARCH} = "cpu" ]; then pip install torch --index-url https://download.pytorch.org/whl/cpu; fi && \
pip install --no-cache-dir -r /home/user/comps/guardrails/requirements.txt
pip install --no-cache-dir -r /home/user/comps/guardrails/llama_guard/requirements.txt

ENV PYTHONPATH=$PYTHONPATH:/home/user

WORKDIR /home/user/comps/guardrails/langchain
WORKDIR /home/user/comps/guardrails/llama_guard/

ENTRYPOINT ["python", "guardrails_tgi_gaudi.py"]
ENTRYPOINT ["python", "guardrails_tgi.py"]
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ version: "3.8"

services:
tgi_gaudi_service:
image: ghcr.io/huggingface/tgi-gaudi:1.2.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
container_name: tgi-service
ports:
- "8088:80"
Expand All @@ -14,9 +14,9 @@ services:
environment:
HF_TOKEN: ${HF_TOKEN}
shm_size: 1g
command: --model-id ${LLM_MODEL_ID}
command: --model-id ${LLM_MODEL_ID} --max-input-tokens 1024 --max-total-tokens 2048
guardrails:
image: opea/gen-ai-comps:guardrails-tgi-gaudi-server
image: opea/guardrails-tgi:latest
container_name: guardrails-tgi-gaudi-server
ports:
- "9090:9090"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def get_tgi_service_model_id(endpoint_url, default=DEFAULT_MODEL):


@register_microservice(
name="opea_service@guardrails_tgi_gaudi",
name="opea_service@guardrails_tgi",
service_type=ServiceType.GUARDRAIL,
endpoint="/v1/guardrails",
host="0.0.0.0",
Expand Down Expand Up @@ -94,4 +94,4 @@ def safety_guard(input: TextDoc) -> TextDoc:
# chat engine for server-side prompt templating
llm_engine_hf = ChatHuggingFace(llm=llm_guard, model_id=safety_guard_model)
print("guardrails - router] LLM initialized.")
opea_microservices["opea_service@guardrails_tgi_gaudi"].start()
opea_microservices["opea_service@guardrails_tgi"].start()
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -11,18 +11,19 @@ function build_docker_images() {
echo "Start building docker images for microservice"
cd $WORKPATH
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker build --no-cache -t opea/guardrails-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/guardrails/langchain/docker/Dockerfile .
docker build --no-cache -t opea/guardrails-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/guardrails/llama_guard/docker/Dockerfile .
echo "Docker images built"
}

function start_service() {
echo "Starting microservice"
export model_id="meta-llama/Meta-Llama-Guard-2-8B"
export SAFETY_GUARD_ENDPOINT=http://${ip_address}:8088
export SAFETY_GUARD_MODEL_ID="meta-llama/Meta-Llama-Guard-2-8B"
export SAFETY_GUARD_ENDPOINT=http://${ip_address}:8088/v1/chat/completions

docker run -d --name="test-guardrails-langchain-tgi-server" -p 8088:80 --runtime=habana -e HF_TOKEN=$HF_TOKEN -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host -e HTTPS_PROXY=$https_proxy -e HTTP_PROXY=$https_proxy ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id $model_id --max-input-length 1024 --max-total-tokens 2048
sleep 4m
docker run -d --name="test-guardrails-langchain-service" -p 9090:9090 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e SAFETY_GUARD_ENDPOINT=$SAFETY_GUARD_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HF_TOKEN opea/guardrails-tgi:latest
docker run -d --name="test-guardrails-langchain-service" -p 9090:9090 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e SAFETY_GUARD_MODEL_ID=$SAFETY_GUARD_MODEL_ID -e SAFETY_GUARD_ENDPOINT=$SAFETY_GUARD_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HF_TOKEN opea/guardrails-tgi:latest
sleep 10s

echo "Microservice started"
Expand Down

0 comments on commit 7749ce3

Please sign in to comment.