-
Notifications
You must be signed in to change notification settings - Fork 609
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* mut add * test add mut * quo mut * test quo mut/ remove want from test struct * refactor exp * change mutatives code * change * not allocaing * exp change to quomut * remove file * refactor quo * refactor ad * refactor tests (cherry picked from commit ca6ccbd) # Conflicts: # osmomath/exp2.go
- Loading branch information
1 parent
d9480f4
commit 2af5e7d
Showing
3 changed files
with
172 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
package osmomath | ||
|
||
import "fmt" | ||
|
||
var ( | ||
// Truncated at precision end. | ||
// See scripts/approximations/main.py exponent_approximation_choice function for details. | ||
numeratorCoefficients13Param = []BigDec{ | ||
MustNewDecFromStr("1.000000000000000000000044212244679434"), | ||
MustNewDecFromStr("0.352032455817400196452603772766844426"), | ||
MustNewDecFromStr("0.056507868883666405413116800969512484"), | ||
MustNewDecFromStr("0.005343900728213034434757419480319916"), | ||
MustNewDecFromStr("0.000317708814342353603087543715930732"), | ||
MustNewDecFromStr("0.000011429747507407623028722262874632"), | ||
MustNewDecFromStr("0.000000198381965651614980168744540366"), | ||
} | ||
|
||
// Rounded up at precision end. | ||
// See scripts/approximations/main.py exponent_approximation_choice function for details. | ||
denominatorCoefficients13Param = []BigDec{ | ||
OneDec(), | ||
MustNewDecFromStr("0.341114724742545112949699755780593311").Neg(), | ||
MustNewDecFromStr("0.052724071627342653404436933178482287"), | ||
MustNewDecFromStr("0.004760950735524957576233524801866342").Neg(), | ||
MustNewDecFromStr("0.000267168475410566529819971616894193"), | ||
MustNewDecFromStr("0.000008923715368802211181557353097439").Neg(), | ||
MustNewDecFromStr("0.000000140277233177373698516010555916"), | ||
} | ||
|
||
// maxSupportedExponent = 2^10. The value is chosen by benchmarking | ||
// when the underlying internal functions overflow. | ||
// If needed in the future, Exp2 can be reimplemented to allow for greater exponents. | ||
maxSupportedExponent = MustNewDecFromStr("2").PowerInteger(9) | ||
) | ||
|
||
// Exp2 takes 2 to the power of a given non-negative decimal exponent | ||
// and returns the result. | ||
// The computation is performed by using th following property: | ||
// 2^decimal_exp = 2^{integer_exp + fractional_exp} = 2^integer_exp * 2^fractional_exp | ||
// The max supported exponent is defined by the global maxSupportedExponent. | ||
// If a greater exponent is given, the function panics. | ||
// Panics if the exponent is negative. | ||
// The answer is correct up to a factor of 10^-18. | ||
// Meaning, result = result * k for k in [1 - 10^(-18), 1 + 10^(-18)] | ||
// Note: our Python script plots show accuracy up to a factor of 10^22. | ||
// However, in Go tests we only test up to 10^18. Therefore, this is the guarantee. | ||
func Exp2(exponent BigDec) BigDec { | ||
if exponent.Abs().GT(maxSupportedExponent) { | ||
panic(fmt.Sprintf("integer exponent %s is too large, max (%s)", exponent, maxSupportedExponent)) | ||
} | ||
if exponent.IsNegative() { | ||
panic(fmt.Sprintf("negative exponent %s is not supported", exponent)) | ||
} | ||
|
||
integerExponent := exponent.TruncateDec() | ||
|
||
fractionalExponent := exponent.Sub(integerExponent) | ||
fractionalResult := exp2ChebyshevRationalApprox(fractionalExponent) | ||
|
||
// Left bit shift is equivalent to multiplying by 2^integerExponent. | ||
fractionalResult.i = fractionalResult.i.Lsh(fractionalResult.i, uint(integerExponent.TruncateInt().Uint64())) | ||
|
||
return fractionalResult | ||
} | ||
|
||
// exp2ChebyshevRationalApprox takes 2 to the power of a given decimal exponent. | ||
// The result is approximated by a 13 parameter Chebyshev rational approximation. | ||
// f(x) = h(x) / p(x) (7, 7) terms. We set the first term of p(x) to 1. | ||
// As a result, this ends up being 7 + 6 = 13 parameters. | ||
// The numerator coefficients are truncated at precision end. The denominator | ||
// coefficients are rounded up at precision end. | ||
// See scripts/approximations/README.md for details of the scripts used | ||
// to compute the coefficients. | ||
// CONTRACT: exponent must be in the range [0, 1], panics if not. | ||
// The answer is correct up to a factor of 10^-18. | ||
// Meaning, result = result * k for k in [1 - 10^(-18), 1 + 10^(-18)] | ||
// Note: our Python script plots show accuracy up to a factor of 10^22. | ||
// However, in Go tests we only test up to 10^18. Therefore, this is the guarantee. | ||
func exp2ChebyshevRationalApprox(x BigDec) BigDec { | ||
if x.LT(ZeroDec()) || x.GT(OneDec()) { | ||
panic(fmt.Sprintf("exponent must be in the range [0, 1], got %s", x)) | ||
} | ||
if x.IsZero() { | ||
return OneDec() | ||
} | ||
if x.Equal(OneDec()) { | ||
return twoBigDec | ||
} | ||
|
||
h_x := numeratorCoefficients13Param[0].Clone() | ||
p_x := denominatorCoefficients13Param[0].Clone() | ||
x_exp_i := OneDec() | ||
for i := 1; i < len(numeratorCoefficients13Param); i++ { | ||
x_exp_i.MulMut(x) | ||
|
||
h_x.AddMut(numeratorCoefficients13Param[i].Mul(x_exp_i)) | ||
p_x.AddMut(denominatorCoefficients13Param[i].Mul(x_exp_i)) | ||
} | ||
|
||
return h_x.QuoMut(p_x) | ||
} |