Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add iso_oscar_singular_[coeff/poly]_ring #4342

Merged
merged 1 commit into from
Dec 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/Rings/Rings.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ include("groebner/groebner.jl")
include("solving.jl")
include("MPolyQuo.jl")
include("FractionalIdeal.jl")
include("oscar_singular.jl")

include("special_ideals.jl")

Expand Down
44 changes: 10 additions & 34 deletions src/Rings/mpoly.jl
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,7 @@ mutable struct BiPolyArray{S}
Ox::NCRing #Oscar Poly Ring or Algebra
O::Vector{S}
Sx # Singular Poly Ring or Algebra, poss. with different ordering
f #= isomorphism Ox -> Sx =#
S::Singular.sideal

function BiPolyArray(O::Vector{T}) where {T <: NCRingElem}
Expand Down Expand Up @@ -381,7 +382,8 @@ function singular_generators(B::IdealGens, monorder::MonomialOrdering=default_or
# in case of quotient rings, monomial ordering is ignored so far in singular_poly_ring
isa(B.gens.Ox, MPolyQuoRing) && return B.gens.S
isdefined(B, :ord) && B.ord == monorder && monomial_ordering(B.Ox, Singular.ordering(base_ring(B.S))) == B.ord && return B.gens.S
SR = singular_poly_ring(B.Ox, monorder)
g = iso_oscar_singular_poly_ring(B.Ox, monorder)
SR = codomain(g)
f = Singular.AlgebraHomomorphism(B.Sx, SR, gens(SR))
S = Singular.map_ideal(f, B.gens.S)
if isdefined(B, :ord) && B.ord == monorder
Expand Down Expand Up @@ -481,7 +483,6 @@ for T in [:MPolyRing, :(AbstractAlgebra.Generic.MPolyRing)]
end
end


#Note: Singular crashes if it gets Nemo.ZZ instead of Singular.ZZ ((Coeffs(17)) instead of (ZZ))
singular_coeff_ring(::ZZRing) = Singular.Integers()
singular_coeff_ring(::QQField) = Singular.Rationals()
Expand Down Expand Up @@ -614,40 +615,13 @@ end
#### end stuff to move to singular.jl

function singular_poly_ring(Rx::MPolyRing{T}; keep_ordering::Bool = false) where {T <: RingElem}
if keep_ordering
return Singular.polynomial_ring(singular_coeff_ring(base_ring(Rx)),
_variables_for_singular(symbols(Rx)),
ordering = internal_ordering(Rx),
cached = false)[1]
else
return Singular.polynomial_ring(singular_coeff_ring(base_ring(Rx)),
_variables_for_singular(symbols(Rx)),
cached = false)[1]
end
end

function singular_poly_ring(Rx::MPolyRing{T}, ord::Symbol) where {T <: RingElem}
return Singular.polynomial_ring(singular_coeff_ring(base_ring(Rx)),
_variables_for_singular(symbols(Rx)),
ordering = ord,
cached = false)[1]
end

function singular_poly_ring(Rx::MPolyRing{T}, ord::Singular.sordering) where {T <: RingElem}
return Singular.polynomial_ring(singular_coeff_ring(base_ring(Rx)),
_variables_for_singular(symbols(Rx)),
ordering = ord,
cached = false)[1]
return _create_singular_poly_ring(singular_coeff_ring(base_ring(Rx)), Rx; keep_ordering)
end

function singular_poly_ring(Rx::MPolyRing{T}, ord::MonomialOrdering) where {T <: RingElem}
return Singular.polynomial_ring(singular_coeff_ring(base_ring(Rx)),
_variables_for_singular(symbols(Rx)),
ordering = singular(ord),
cached = false)[1]
function singular_poly_ring(Rx::MPolyRing{T}, ord::Union{Symbol, Singular.sordering, MonomialOrdering}) where {T <: RingElem}
return _create_singular_poly_ring(singular_coeff_ring(base_ring(Rx)), Rx, ord)
end


#catch all for generic nemo rings
function Oscar.singular_coeff_ring(F::AbstractAlgebra.Ring)
return Singular.CoefficientRing(F)
Expand Down Expand Up @@ -746,8 +720,10 @@ end

function singular_assure(I::IdealGens)
if !isdefined(I.gens, :S)
I.gens.Sx = singular_poly_ring(I.Ox; keep_ordering = I.keep_ordering)
I.gens.S = Singular.Ideal(I.Sx, elem_type(I.Sx)[I.Sx(x) for x = I.O])
g = iso_oscar_singular_poly_ring(I.Ox; keep_ordering = I.keep_ordering)
I.gens.Sx = codomain(g)
I.gens.f = g
I.gens.S = Singular.Ideal(I.gens.Sx, elem_type(I.gens.Sx)[g(x) for x = I.gens.O])
end
if I.isGB && (!isdefined(I, :ord) || I.ord == monomial_ordering(I.gens.Ox, internal_ordering(I.gens.Sx)))
I.gens.S.isGB = true
Expand Down
Loading
Loading