-
Notifications
You must be signed in to change notification settings - Fork 133
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Exterior powers of finitely presented modules (#2879)
* Implement a prototype for exterior powers of free modules. * Implement Koszul complexes associated to elements of free modules. * Preserve gradings and implement koszul dual bases. * Implement induced maps on exterior powers. * Some tweaks. * Move everything to appropriate places. * Implement iteration over module monomials of a specific degree. * Add trailing zeroes to the Koszul complex. * Allow custom parents and no caching. * Revert "Implement iteration over module monomials of a specific degree." This reverts commit 48b9752. * Extend optional caching to Koszul complexes. * Add extra multiplication function. * Some tweaks. * Customize printing. * Add pure and inv_pure. * Put the check back in. * Migrate the OrderedMultiIndex. * Export the new functionality. * Clean up the include statements. * Implement hom method. * Rename pure and decompose functions. * Migrate tests. * Clean up exports from LieAlgebra.jl. * Fix tests. * Some improvements in localizations. * Implement exterior powers for subquos. * Some fixes. * Reroute koszul complexes to use the non-Singular methods. * Deprecate old singular methods. * Repair Koszul homology. * Remove duplicate methods and use singular's depth. * Add tests. * Add some assertions. * Some tweaks for the ordered multiindices. * Pass on the check flag for construction of complexes. * Fix doctests and add a truely generic method for the depth computation.
- Loading branch information
1 parent
a98d2d5
commit f9d8294
Showing
19 changed files
with
1,098 additions
and
75 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
######################################################################## | ||
# Ordered multiindices of the form 0 < i₁ < i₂ < … < iₚ ≤ n. | ||
# | ||
# For instance, these provide a coherent way to enumerate the generators | ||
# of an exterior power ⋀ ᵖ M of a module M given a chosen set of | ||
# generators of M. But they can also be used for other purposes | ||
# like enumerating subsets of p elements out of a set with n elements. | ||
######################################################################## | ||
mutable struct OrderedMultiIndex{IntType<:IntegerUnion} | ||
i::Vector{IntType} | ||
n::IntType | ||
|
||
function OrderedMultiIndex(i::Vector{T}, n::T) where {T<:IntegerUnion} | ||
@assert all(k->i[k]<i[k+1], 1:length(i)-1) "indices must be strictly ordered" | ||
return new{T}(i, n) | ||
end | ||
end | ||
|
||
function ordered_multi_index(i::Vector{T}, n::T) where {T<:IntegerUnion} | ||
return OrderedMultiIndex(i, n) | ||
end | ||
|
||
# For an ordered multiindex i = (0 < i₁ < i₂ < … < iₚ ≤ n) this returns the vector (i₁,…,iₚ). | ||
indices(a::OrderedMultiIndex) = a.i | ||
|
||
# For an ordered multiindex i = (0 < i₁ < i₂ < … < iₚ ≤ n) this returns n. | ||
bound(a::OrderedMultiIndex) = a.n | ||
|
||
# For an ordered multiindex i = (0 < i₁ < i₂ < … < iₚ ≤ n) this returns p. | ||
length(a::OrderedMultiIndex) = length(a.i) | ||
|
||
# For an ordered multiindex i = (0 < i₁ < i₂ < … < iₚ ≤ n) this returns iₖ. | ||
getindex(a::OrderedMultiIndex, k::Int) = a.i[k] | ||
|
||
index_type(a::OrderedMultiIndex) = index_type(typeof(a)) | ||
index_type(::Type{OrderedMultiIndex{T}}) where {T} = T | ||
|
||
# Internal function for "multiplication" of ordered multiindices. | ||
# | ||
# For i = (0 < i₁ < i₂ < … < iₚ ≤ n) and j = (0 < j₁ < j₂ < … < jᵣ ≤ n) | ||
# the result is a pair `(sign, a)` with `sign` either 0 in case that | ||
# iₖ = jₗ for some k and l, or ±1 depending on the number of transpositions | ||
# needed to put (i₁, …, iₚ, j₁, …, jᵣ) into a strictly increasing order | ||
# to produce `a`. | ||
function _mult(a::OrderedMultiIndex{T}, b::OrderedMultiIndex{T}) where {T} | ||
@assert bound(a) == bound(b) "multiindices must have the same bounds" | ||
|
||
# in case of a double index return zero | ||
any(x->(x in indices(b)), indices(a)) && return 0, indices(a) | ||
|
||
p = length(a) | ||
q = length(b) | ||
result_indices = vcat(indices(a), indices(b)) | ||
sign = 1 | ||
|
||
# bubble sort result_indices and keep track of the sign | ||
for k in p:-1:1 | ||
l = k | ||
c = result_indices[l] | ||
while l < p + q && c > result_indices[l+1] | ||
result_indices[l] = result_indices[l+1] | ||
sign = -sign | ||
l = l+1 | ||
end | ||
result_indices[l] = c | ||
end | ||
return sign, result_indices | ||
end | ||
|
||
# For two ordered multiindices i = (0 < i₁ < i₂ < … < iₚ ≤ n) | ||
# and j = (0 < j₁ < j₂ < … < jᵣ ≤ n) this returns a pair `(sign, a)` | ||
# with `sign` either 0 in case that iₖ = jₗ for some k and l, | ||
# or ±1 depending on the number of transpositions needed to put | ||
# (i₁, …, iₚ, j₁, …, jᵣ) into a strictly increasing order to produce `a`. | ||
function _wedge(a::OrderedMultiIndex{T}, b::OrderedMultiIndex{T}) where {T} | ||
sign, ind = _mult(a, b) | ||
iszero(sign) && return sign, a | ||
return sign, OrderedMultiIndex(ind, bound(a)) | ||
end | ||
|
||
function _wedge(a::Vector{T}) where {T <: OrderedMultiIndex} | ||
isempty(a) && error("list must not be empty") | ||
isone(length(a)) && return 1, first(a) | ||
k = div(length(a), 2) | ||
b = a[1:k] | ||
c = a[k+1:end] | ||
sign_b, ind_b = _wedge(b) | ||
sign_c, ind_c = _wedge(c) | ||
sign, ind = _wedge(ind_b, ind_c) | ||
return sign * sign_b * sign_c, ind | ||
end | ||
|
||
function ==(a::OrderedMultiIndex{T}, b::OrderedMultiIndex{T}) where {T} | ||
return bound(a) == bound(b) && indices(a) == indices(b) | ||
end | ||
|
||
######################################################################## | ||
# A data type to facilitate iteration over all ordered multiindices | ||
# of the form 0 < i₁ < i₂ < … < iₚ ≤ n for fixed 0 ≤ p ≤ n. | ||
# | ||
# Example: | ||
# | ||
# for i in OrderedMultiIndexSet(3, 5) | ||
# # do something with i = (0 < i₁ < i₂ < i₃ ≤ 5). | ||
# end | ||
######################################################################## | ||
mutable struct OrderedMultiIndexSet | ||
n::Int | ||
p::Int | ||
|
||
function OrderedMultiIndexSet(p::Int, n::Int) | ||
@assert 0 <= p <= n "invalid bounds" | ||
return new(n, p) | ||
end | ||
end | ||
|
||
bound(I::OrderedMultiIndexSet) = I.n | ||
index_length(I::OrderedMultiIndexSet) = I.p | ||
|
||
Base.eltype(I::OrderedMultiIndexSet) = OrderedMultiIndex | ||
Base.length(I::OrderedMultiIndexSet) = binomial(bound(I), index_length(I)) | ||
|
||
function Base.iterate(I::OrderedMultiIndexSet) | ||
ind = OrderedMultiIndex([i for i in 1:index_length(I)], bound(I)) | ||
return ind, ind | ||
end | ||
|
||
function Base.iterate(I::OrderedMultiIndexSet, state::OrderedMultiIndex) | ||
bound(I) == bound(state) || error("index not compatible with set") | ||
ind = copy(indices(state)) | ||
l = length(state) | ||
while l > 0 && ind[l] == bound(I) - length(state) + l | ||
l = l - 1 | ||
end | ||
iszero(l) && return nothing | ||
ind[l] = ind[l] + 1 | ||
l = l + 1 | ||
while l <= length(state) | ||
ind[l] = ind[l-1] + 1 | ||
l = l + 1 | ||
end | ||
result = OrderedMultiIndex(ind, bound(I)) | ||
return result, result | ||
end | ||
|
||
function Base.show(io::IO, ind::OrderedMultiIndex) | ||
i = indices(ind) | ||
print(io, "0 ") | ||
for i in indices(ind) | ||
print(io, "< $i ") | ||
end | ||
print(io, "<= $(bound(ind))") | ||
end | ||
|
||
# For an ordered multiindex i = (0 < i₁ < i₂ < … < iₚ ≤ n) this | ||
# returns the number k so that i appears at the k-th spot in the | ||
# enumeration of all ordered multiindices for this pair 0 ≤ p ≤ n. | ||
function linear_index(ind::OrderedMultiIndex) | ||
n = bound(ind) | ||
p = length(ind) | ||
iszero(p) && return 1 | ||
isone(p) && return ind[1] | ||
i = indices(ind) | ||
return binomial(n, p) - binomial(n - first(i) + 1, p) + linear_index(OrderedMultiIndex(i[2:end].-first(i), n-first(i))) | ||
end | ||
|
||
# For a pair 0 ≤ p ≤ n return the k-th ordered multiindex in the | ||
# enumeration of all ordered multiindices (0 < i₁ < i₂ < … < iₚ ≤ n). | ||
function ordered_multi_index(k::Int, p::Int, n::Int) | ||
(k < 1 || k > binomial(n, p)) && error("index out of range") | ||
iszero(p) && return OrderedMultiIndex(Int[], n) | ||
isone(p) && return OrderedMultiIndex([k], n) | ||
n == p && return OrderedMultiIndex([k for k in 1:n], n) | ||
bin = binomial(n, p) | ||
i1 = findfirst(j->(bin - binomial(n - j, p) > k - 1), 1:n-p) | ||
if i1 === nothing | ||
prev_res = ordered_multi_index(k - bin + 1, p-1, p-1) | ||
k = n-p+1 | ||
return OrderedMultiIndex(pushfirst!(indices(prev_res).+k, k), n) | ||
else | ||
prev_res = ordered_multi_index(k - bin + binomial(n - i1 + 1, p), p-1, n - i1) | ||
return OrderedMultiIndex(pushfirst!(indices(prev_res).+i1, i1), n) | ||
end | ||
end | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
#include("Helpers.jl") Moved to src/Combinatorics/OrderedMultiIndex.jl | ||
include("FreeModules.jl") | ||
include("SubQuo.jl") | ||
include("Generic.jl") |
Oops, something went wrong.