Skip to content

Commit

Permalink
Updates to FreeAssAlgIdeal (#4035)
Browse files Browse the repository at this point in the history
Co-authored-by: Antony Della Vecchia <[email protected]>
Co-authored-by: antonydellavecchia <[email protected]>
Co-authored-by: Lars Göttgens <[email protected]>
  • Loading branch information
4 people authored Sep 5, 2024
1 parent 34e1af7 commit 81f64bd
Show file tree
Hide file tree
Showing 18 changed files with 630 additions and 299 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ UUIDs = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
cohomCalg_jll = "5558cf25-a90e-53b0-b813-cadaa3ae7ade"

[compat]
AbstractAlgebra = "0.42.0"
AbstractAlgebra = "0.42.3"
AlgebraicSolving = "0.5.1"
Distributed = "1.6"
GAP = "0.10.2"
Expand Down
10 changes: 5 additions & 5 deletions docs/src/NoncommutativeAlgebra/free_associative_algebra.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,13 +9,13 @@ CurrentModule = Oscar
### Types

The OSCAR type for two-sided ideals in a free associative algebra is
`FreeAssAlgIdeal{T}`, where `T` is the element type of the algebra.
`FreeAssociativeAlgebraIdeal{T}`, where `T` is the element type of the algebra.

### Constructors

```julia
ideal(R::FreeAssAlgebra, g::Vector{T}) where T <: FreeAssAlgElem
ideal(g::Vector{T}) where T <: FreeAssAlgElem
ideal(R::FreeAssociativeAlgebra, g::Vector{T}) where T <: FreeAssociativeAlgebraElem
ideal(g::Vector{T}) where T <: FreeAssociativeAlgebraElem
```

### Ideal Membership
Expand All @@ -25,11 +25,11 @@ Non-commutative polynomial rings are not Noetherian. Hence, in general, Groebne
Setting the parameter `deg_bound` to a positive value yields the truncation of the Groebner bases to a fixed degree. Such a truncation is always finite.

```@docs
groebner_basis(I::FreeAssAlgIdeal, deg_bound::Int=-1; protocol::Bool=false)
groebner_basis(I::FreeAssociativeAlgebraIdeal, deg_bound::Int=-1; protocol::Bool=false)
```

If a finite Gröbner basis exists, it solves the ideal membership problem.

```@docs
ideal_membership(a::FreeAssAlgElem, I::FreeAssAlgIdeal, deg_bound::Int)
ideal_membership(a::FreeAssociativeAlgebraElem, I::FreeAssociativeAlgebraIdeal, deg_bound::Int)
```
8 changes: 4 additions & 4 deletions src/Groups/action.jl
Original file line number Diff line number Diff line change
Expand Up @@ -256,12 +256,12 @@ end
@doc raw"""
on_indeterminates(f::GapObj, p::PermGroupElem)
on_indeterminates(f::MPolyRingElem, p::PermGroupElem)
on_indeterminates(f::FreeAssAlgElem, p::PermGroupElem)
on_indeterminates(f::FreeAssociativeAlgebraElem, p::PermGroupElem)
on_indeterminates(f::MPolyIdeal, p::PermGroupElem)
Return the image of `f` under `p` where `p` acts via permuting the indeterminates.
For `MPolyRingElem`, `FreeAssAlgElem`, and `MPolyIdeal` objects,
For `MPolyRingElem`, `FreeAssociativeAlgebraElem`, and `MPolyIdeal` objects,
one can also call `^` instead of `on_indeterminates`.
# Examples
Expand Down Expand Up @@ -303,7 +303,7 @@ function on_indeterminates(f::MPolyRingElem, s::PermGroupElem)
return finish(g)
end

function on_indeterminates(f::FreeAssAlgElem{T}, s::PermGroupElem) where T
function on_indeterminates(f::FreeAssociativeAlgebraElem{T}, s::PermGroupElem) where T
G = parent(s)
S = parent(f)
@assert ngens(S) == degree(G)
Expand Down Expand Up @@ -374,7 +374,7 @@ end

^(f::MPolyRingElem, p::PermGroupElem) = on_indeterminates(f, p)

^(f::FreeAssAlgElem, p::PermGroupElem) = on_indeterminates(f, p)
^(f::FreeAssociativeAlgebraElem, p::PermGroupElem) = on_indeterminates(f, p)

^(f::MPolyRingElem{T}, p::MatrixGroupElem{T, S}) where T where S = on_indeterminates(f, p)

Expand Down
192 changes: 0 additions & 192 deletions src/Rings/FreeAssAlgIdeal.jl

This file was deleted.

Loading

0 comments on commit 81f64bd

Please sign in to comment.