A lightweight library useful for translating integers to and from radix strings (binary, hex, octal or any base) using simple, clean functional syntax.
Compatible with all Apple platforms and Linux.
Unified library with several constructor methods, all of which in turn provide all of the functionality of the library inline.
Option 1: Function | Option 2: Category method | Returns |
---|---|---|
Radix(T, base:) |
.radix(base:) |
Radix<T>(base: n) where n is 2...36 |
Binary(T) |
.binary |
Radix<T>(base: 2) |
Octal(T) |
.octal |
Radix<T>(base: 8) |
Hex(T) |
.hex |
Radix<T>(base: 16) |
For the sake of simplifying this documentation, Hex()
/ .hex
will be used for most examples below.
// convert to or from hex strings
255.hex.stringValue // "FF"
255.hex.stringValue(prefix: true) // "0xFF"
255.hex.stringValue(prefix: true, uppercase: false) // "0xff"
"FF".hex?.value // Optional(255)
"0xFF".hex?.value // Optional(255)
"ZZ".hex?.value // nil (not valid hex string, so init fails)
// work with arrays of any integer type, or hex strings and convert between them
[0, 255, 0, 255].hex.stringValue // "00 FF 00 FF"
[0, 255, 0, 255].hex.stringValues // ["00", "FF", "00", "FF"]
[0, 255, 0, 255].hex.stringValue(prefixes: true) // "0x00 0xFF 0x00 0xFF"
[0, 255, 0, 255].hex.stringValues(prefixes: true) // ["0x00", "0xFF", "0x00", "0xFF"]
[0, 255, 0, 255].hex.stringValueArrayLiteral // "[0x0, 0xFF, 0x0, 0xFF]"
[0, 255, 0, 255].hex.stringValueArrayLiteral(padTo: 2) // "[0x00, 0xFF, 0x00, 0xFF]"
[0, 65535, 4000].hex.stringValue // "0 FFFF FA0"
[0, 65535, 4000].hex.stringValue(padTo: 2) // "00 FFFF FA0"
[0, 65535, 4000].hex.stringValue(padToEvery: 2) // "00 FFFF 0FA0"
[0, 65535, 4000].hex.stringValue(padToEvery: 4) // "0000 FFFF 0FA0"
["00", "FF", "ZZ"].hex.values // [Optional(0), Optional(255), nil]
// test for equatability or perform math operations with great flexibility,
// without needing to extract the .value first, casting or converting
UInt8(123).hex == Int16(123) // true
"FF".hex == 255 // true
123.hex + 10.binary - 10 // 123
-
Add SwiftRadix as a dependency using Swift Package Manager.
-
In an app project or framework, in Xcode:
- Select the menu: File → Swift Packages → Add Package Dependency...
- Enter this URL:
https://github.com/orchetect/SwiftRadix
-
In a Swift Package, add it to the Package.swift dependencies:
.package(url: "https://github.com/orchetect/SwiftRadix", from: "1.3.0")
-
pod 'SwiftRadix'
At its core, a new generic type called Radix
wraps any BinaryInteger
value, as well as its associated base (radix).
Radix<T: BinaryInteger>
// constructors
Radix(0xFF, base: 16) // Radix<Int>(255)?
Radix(UInt8(0xFF), base: 16) // Radix<UInt8>(255)?
Radix<UInt8>(0xFF, base: 16) // Radix<UInt8>(255)?
Radix(0b1111, base: 2) // Radix<Int>(15)?
// category method to construct
0xFF.radix(base: 16) // Radix<Int>(255)?
0xFF.radix(base: 16, as: UInt8.self) // Radix<UInt8>(255)?
However, for common bases (binary base-2, octal base-8, hex base-16) you may never need to construct Radix
directly. Instead, there are convenient functional category methods on common types and collections to shortcut these.
255.binary // == Radix<Int>(0b11111111, base: 2)
"0b11111111".binary // == Radix<Int>(255, base: 2)?
255.octal // == Radix<Int>(0o377, base: 8)
"0o377".octal // == Radix<Int>(255, base: 8)?
255.hex // == Radix<Int>(0xFF, base: 16)
"0xFF".hex // == Radix<Int>(255, base: 16)?
255.radix(base: 5) // == Radix<Int>(255, base: 5)
"2010".radix(base: 5) // == Radix<Int>(255, base: 5)?
You will see how powerful and elegant these can be when combined, further down the README.
Two invocation styles, producing the same result.
// proxy constructor function
Hex(123) // Radix<Int>(123, base: 16)
// functional category property
123.hex // Radix<Int>(123, base: 16)
Any BinaryInteger
type can be used.
Int(123).hex // Radix<Int>(123)
Int8(123).hex // Radix<Int8>(123)
UInt8(123).hex // Radix<UInt8>(123)
Int16(123).hex // Radix<Int16>(123)
UInt16(123).hex // Radix<UInt16>(123)
Int32(123).hex // Radix<Int32>(123)
UInt32(123).hex // Radix<UInt32>(123)
Int64(123).hex // Radix<Int64>(123)
UInt64(123).hex // Radix<UInt64>(123)
A valid hexadecimal string can be used, either containing the prefix 0x
or without it.
This constructor returns an Optional
, since if the string is not valid hexadecimal, the constructor will fail and nil
will be returned.
If no integer type is specified, the type will default to Int
.
Hex("FF") // Radix<Int>(255)?
"FF".hex // Radix<Int>(255)?
"0xFF".hex // Radix<Int>(255)?
"ZZZZ".hex // nil ; not a valid hex string
To specify an integer type other than Int
, specify it using as:
.
Hex("FF", as: UInt8.self) // Radix<UInt8>(255)?
"FF".hex(as: UInt8.self) // Radix<UInt8>(255)?
Hex("FFFFFF", as: UInt8.self) // nil -- 0xFFFFFF does not fit in UInt8, so init fails
"FFFFFF".hex(as: UInt8.self) // nil -- 0xFFFFFF does not fit in UInt8, so init fails
Various methods become available:
let h = 255.hex // Radix<Int>(255)
h.value // Int(255)
h.stringValue // "FF"
h.stringValue(prefix: true) // "0xFF"
h.stringValue(prefix: true, uppercase: false) // "0xff"
h.stringValue = "7F" // can also set the hex String and get value...
h.value // 127, type Int
Padding to n number of leading zeros can be specified if you need uniform string formatting:
0xF.hex.stringValue // "F"
0xF.hex.stringValue(padTo: 2) // "0F"
0xF.hex.stringValue(padTo: 3) // "00F"
0xFFFF.hex.stringValue(padTo: 3) // "FFFF" - has no effect; it's > 3 places
It is also possible to pad leading zeros to every n multiple of digit places.
0xF.hex.stringValue(padToEvery: 2) // "0F"
0xFF.hex.stringValue(padToEvery: 2) // "FF"
0xFFF.hex.stringValue(padToEvery: 2) // "0FFF"
0xFFFF.hex.stringValue(padToEvery: 2) // "FFFF"
0x1.hex.stringValue(padToEvery: 4) // "0001"
0x12345.hex.stringValue(padToEvery: 4) // "00012345"
In addition to padding, strings can be split every n digit places, and also in combination with padding.
0xF.hex.stringValue(padTo: 8, splitEvery: 4) // "0000 000F"
0x123AB.hex.stringValue(padToEvery: 2, splitEvery: 2) // "01 23 AB"
Radix<T>
can be tested for equatability directly using typical operators (==
, !=
, >
, <
) without needing to access the .value
property. This makes for cleaner, more convenient syntax.
let h1 = 10.hex // Radix<Int>
let h2 = 20.hex // Radix<Int>
h1.value == h2.value // this works but it's easier to just do this...
h1 == h2 // false
They can be compared with great flexibility -- even between different integer types directly without requiring casting or conversions.
let h1 = 10.hex // Radix<Int>
let h2 = 20.hex // Radix<Int>
h1 == h2 // false (comparing Radix<Int> with Radix<Int>)
h1 > 20 // true (comparing Radix<Int> with Int)
h1 != UInt8(20) // true (comparing Radix<Int> with UInt8)
// even though "FF".hex produces an Optional,
// the comparison still works safely without requiring the optional to be unwrapped first
"FF".hex == 255 // true
"FF".hex == 255.hex // true
"ZZ".hex == 255.hex // false - optional is nil
Additional operators supported, allowing assignment and bitwise operations directly.
+=
,-=
,*=
,/=
,<<
,>>
,&
Traditional binary bit shift left/right is available directly on Radix
.
0b0100.hex << 1 // 0b1000
0b0100.hex >> 1 // 0b0010
Any integer array can be converted to an equivalent [Radix<T>]
Array:
let a = [1, 2].hex // [Radix<Int>(1), Radix<Int>(2)]
let arr: [UInt8] = [3, 4]
let b = arr.hex // [Radix<UInt8>(3), Radix<UInt8>(4)]
// and back again:
a.values // [1, 2] of type [Int]
b.values // [3, 4] of type [UInt8]
It can also be flattened into a concatenated String
or an array of String
s:
[0, 255, 0, 255].hex.stringValue // "00 FF 00 FF"
[0, 255, 0, 255].hex.stringValue(prefix: true) // "0x00 0xFF 0x00 0xFF"
[0, 255, 0, 255].hex.stringValues // ["00", "FF", "00", "FF"]
[0, 255, 0, 255].hex.stringValues(prefix: true) // ["0x00", "0xFF", "0x00", "0xFF"]
String
arrays can also be translated into an array of Radix<T>?
. The .values
property produces an unwrapped array of [Optional<T>]
.
["00", "0xFF", "ZZ"].hex.values // [Optional(0), Optional(255), nil]
It is also possible to easily generate a Swift source-compatible array literal.
let arr = [0, 2, 255]
arr.hex.stringValueArrayLiteral // "[0x0, 0x2, 0xFF]"
arr.binary.stringValueArrayLiteral // "[0b0, 0b10, 0b11111111]"
Useful when debugging binary data to the console, or presenting it in a human-readable format easily.
let d = Data([0x1, 0x2, 0x3, 0xFF])
d.hex.stringValue(padTo: 2) // "01 02 03 FF"
A variety of additional methods for reading and manipulating the underlying integer value.
Method: .bit(Int)
Subscript: [bit: Int] { get set }
- gets single bit value at specified position right-to-left
- subscript can also be used to get or set bit values
- radix-agnostic
var h = 0b1100.binary
h.bit(0) // 0b0.binary
h.bit(2) // 0b1.binary
h[bit: 0] // 0b0 (type T, which is Int in this case)
h[bit: 2] // 0b1 (type T, which is Int in this case)
h[bit: 2] = 0b0
h.value // == 0b1000
Method: .nibble(Int)
Subscript: [nibble: Int] { get set }
- gets nibble (4-bit) value at specified position right-to-left
- subscript can also be used to get or set nibble values
- radix-agnostic
var h = 0x1234.hex
h.nibble(0) // 0x4.hex
h.nibble(3) // 0x1.hex
h[nibble: 0] // 0x4 (type T, which is Int in this case)
h[nibble: 3] // 0x1 (type T, which is Int in this case)
h[nibble: 3] = 0xF
h.value // == 0xF234
.bytes
- A convenience property to return the raw bytes of the value as
[UInt8]
based on system endianness - radix-agnostic
let bytes = 0xFF00.hex.bytes
bytes // [0x00, 0xFF]
Coded by a bunch of 🐹 hamsters in a trench coat that calls itself @orchetect.
Licensed under the MIT license. See LICENSE for details.
Contributions are welcome. Feel free to post an Issue to discuss.