Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Label "face" for bounding boxes in Wider Face #215

Merged
merged 4 commits into from
Apr 13, 2021
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Added support for auto-merging (joining) of datasets with no labels and having labels (<https://github.com/openvinotoolkit/datumaro/pull/200>)
- Allowed explicit label removal in `remap_labels` transform (<https://github.com/openvinotoolkit/datumaro/pull/203>)
- Image extension in CVAT format export (<https://github.com/openvinotoolkit/datumaro/pull/214>)
- Added a label "face" for bounding boxes in Wider Face (<https://github.com/openvinotoolkit/datumaro/pull/215>)

### Security
-
Expand Down
41 changes: 25 additions & 16 deletions datumaro/plugins/widerface_format.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ class WiderFacePath:
IMAGES_DIR_NO_LABEL = 'no_label'
BBOX_ATTRIBUTES = ['blur', 'expression', 'illumination',
'occluded', 'pose', 'invalid']
DEFAULT_LABEL = 'face'

class WiderFaceExtractor(SourceExtractor):
def __init__(self, path, subset=None):
Expand All @@ -40,12 +41,14 @@ def __init__(self, path, subset=None):

def _load_categories(self):
label_cat = LabelCategories()

label_cat.add(WiderFacePath.DEFAULT_LABEL)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should this label be included if there is a file?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You're right. This shouldn't work for a label file. Thanks.

path = osp.join(self._dataset_dir, WiderFacePath.LABELS_FILE)
if osp.isfile(path):
with open(path, encoding='utf-8') as labels_file:
for line in labels_file:
label_cat.add(line.strip())
label_name = line.strip()
if label_name != WiderFacePath.DEFAULT_LABEL:
label_cat.add(label_name)
else:
subset_path = osp.join(self._dataset_dir,
WiderFacePath.SUBSET_DIR + self._subset,
Expand All @@ -56,12 +59,15 @@ def _load_categories(self):
images_dir != WiderFacePath.IMAGES_DIR_NO_LABEL:
if '--' in images_dir:
images_dir = images_dir.split('--')[1]
label_cat.add(images_dir)

if images_dir != WiderFacePath.DEFAULT_LABEL:
label_cat.add(images_dir)
if len(label_cat) == 1:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should only the default label be removed when there was a file?

label_cat = LabelCategories()
return { AnnotationType.label: label_cat }

def _load_items(self, path):
items = {}
label_categories = self._categories[AnnotationType.label]

with open(path, 'r', encoding='utf-8') as f:
lines = f.readlines()
Expand All @@ -73,6 +79,7 @@ def _load_items(self, path):
for line_idx in line_ids:
image_path = lines[line_idx].strip()
item_id = osp.splitext(image_path)[0]
item_id = item_id.replace('\\', '/')

image_path = osp.join(self._dataset_dir,
WiderFacePath.SUBSET_DIR + self._subset,
Expand All @@ -84,9 +91,9 @@ def _load_items(self, path):
if '--' in label_name:
label_name = label_name.split('--')[1]
if label_name != WiderFacePath.IMAGES_DIR_NO_LABEL:
label = \
self._categories[AnnotationType.label].find(label_name)[0]
annotations.append(Label(label=label))
label = label_categories.find(label_name)[0]
if label != None:
annotations.append(Label(label=label))
item_id = item_id[len(item_id.split('/')[0]) + 1:]

items[item_id] = DatasetItem(id=item_id, subset=self._subset,
Expand All @@ -101,21 +108,22 @@ def _load_items(self, path):
for bbox in bbox_lines:
bbox_list = bbox.split()
if 4 <= len(bbox_list):
attributes = {}
label = None
label = label_categories.find(WiderFacePath.DEFAULT_LABEL)[0]
if len(bbox_list) == 5 or len(bbox_list) == 11:
if len(bbox_list) == 5:
label_name = bbox_list[4]
else:
label_name = bbox_list[10]
label = \
self._categories[AnnotationType.label].find(label_name)[0]
label_name = bbox_list[-1]
label = label_categories.find(label_name)[0]
if label == None and len(label_categories) == 0:
label_categories.add(WiderFacePath.DEFAULT_LABEL)
label = label_categories.find(WiderFacePath.DEFAULT_LABEL)[0]

attributes = {}
if 10 <= len(bbox_list):
i = 4
for attr in WiderFacePath.BBOX_ATTRIBUTES:
if bbox_list[i] != '-':
attributes[attr] = bbox_list[i]
i += 1

annotations.append(Bbox(
float(bbox_list[0]), float(bbox_list[1]),
float(bbox_list[2]), float(bbox_list[3]),
Expand Down Expand Up @@ -180,7 +188,8 @@ def apply(self):
wider_attr += '- '
if 0 < attr_counter:
wider_annotation += wider_attr
if bbox.label is not None:
if label_categories[bbox.label].name != WiderFacePath.DEFAULT_LABEL and \
bbox.label is not None:
wider_annotation += '%s' % label_categories[bbox.label].name
wider_annotation += '\n'

Expand Down
75 changes: 33 additions & 42 deletions tests/test_widerface_format.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,47 +15,44 @@ def test_can_save_and_load(self):
source_dataset = Dataset.from_iterable([
DatasetItem(id='1', subset='train', image=np.ones((8, 8, 3)),
annotations=[
Bbox(0, 2, 4, 2),
Bbox(0, 1, 2, 3, attributes={
Bbox(0, 2, 4, 2, label=0),
Bbox(0, 1, 2, 3, label=0, attributes={
'blur': '2', 'expression': '0', 'illumination': '0',
'occluded': '0', 'pose': '2', 'invalid': '0'}),
Label(0),
Label(1),
]
),
DatasetItem(id='2', subset='train', image=np.ones((10, 10, 3)),
annotations=[
Bbox(0, 2, 4, 2, attributes={
Bbox(0, 2, 4, 2, label=0, attributes={
'blur': '2', 'expression': '0', 'illumination': '1',
'occluded': '0', 'pose': '1', 'invalid': '0'}),
Bbox(3, 3, 2, 3, attributes={
Bbox(3, 3, 2, 3, label=0, attributes={
'blur': '0', 'expression': '1', 'illumination': '0',
'occluded': '0', 'pose': '2', 'invalid': '0'}),
Bbox(2, 1, 2, 3, attributes={
Bbox(2, 1, 2, 3, label=0, attributes={
'blur': '2', 'expression': '0', 'illumination': '0',
'occluded': '0', 'pose': '0', 'invalid': '1'}),
Label(1),
Label(2),
]
),

DatasetItem(id='3', subset='val', image=np.ones((8, 8, 3)),
annotations=[
Bbox(0, 1.1, 5.3, 2.1, attributes={
Bbox(0, 1.1, 5.3, 2.1, label=0, attributes={
'blur': '2', 'expression': '1', 'illumination': '0',
'occluded': '0', 'pose': '1', 'invalid': '0'}),
Bbox(0, 2, 3, 2, attributes={
Bbox(0, 2, 3, 2, label=0, attributes={
'occluded': 'False'}),
Bbox(0, 2, 4, 2),
Bbox(0, 7, 3, 2, attributes={
Bbox(0, 2, 4, 2, label=0),
Bbox(0, 7, 3, 2, label=0, attributes={
'blur': '2', 'expression': '1', 'illumination': '0',
'occluded': '0', 'pose': '1', 'invalid': '0'}),
]
),

DatasetItem(id='4', subset='val', image=np.ones((8, 8, 3))),
], categories={
AnnotationType.label: LabelCategories.from_iterable(
'label_' + str(i) for i in range(3)),
})
], categories=['face', 'label_0', 'label_1'])

with TestDir() as test_dir:
WiderFaceConverter.convert(source_dataset, test_dir, save_images=True)
Expand All @@ -73,10 +70,7 @@ def test_can_save_dataset_with_no_subsets(self):
'occluded': '0', 'pose': '2', 'invalid': '0'}),
]
),
], categories={
AnnotationType.label: LabelCategories.from_iterable(
'label_' + str(i) for i in range(3)),
})
], categories=['face', 'label_0', 'label_1'])

with TestDir() as test_dir:
WiderFaceConverter.convert(source_dataset, test_dir, save_images=True)
Expand All @@ -88,15 +82,12 @@ def test_can_save_dataset_with_cyrillic_and_spaces_in_filename(self):
source_dataset = Dataset.from_iterable([
DatasetItem(id='кириллица с пробелом', image=np.ones((8, 8, 3)),
annotations=[
Bbox(0, 1, 2, 3, label=1, attributes = {
Bbox(0, 1, 2, 3, label=0, attributes = {
'blur': '2', 'expression': '0', 'illumination': '0',
'occluded': '0', 'pose': '2', 'invalid': '0'}),
]
),
], categories={
AnnotationType.label: LabelCategories.from_iterable(
'label_' + str(i) for i in range(3)),
})
], categories=['face'])

with TestDir() as test_dir:
WiderFaceConverter.convert(source_dataset, test_dir, save_images=True)
Expand All @@ -109,26 +100,26 @@ def test_can_save_dataset_with_non_widerface_attributes(self):
source_dataset = Dataset.from_iterable([
DatasetItem(id='a/b/1', image=np.ones((8, 8, 3)),
annotations=[
Bbox(0, 2, 4, 2),
Bbox(0, 1, 2, 3, attributes={
Bbox(0, 2, 4, 2, label=0),
Bbox(0, 1, 2, 3, label=0, attributes={
'non-widerface attribute': '0',
'blur': 1, 'invalid': '1'}),
Bbox(1, 1, 2, 2, attributes={
Bbox(1, 1, 2, 2, label=0, attributes={
'non-widerface attribute': '0'}),
]
),
], categories=[])
], categories=['face'])

target_dataset = Dataset.from_iterable([
DatasetItem(id='a/b/1', image=np.ones((8, 8, 3)),
annotations=[
Bbox(0, 2, 4, 2),
Bbox(0, 1, 2, 3, attributes={
Bbox(0, 2, 4, 2, label=0),
Bbox(0, 1, 2, 3, label=0, attributes={
'blur': '1', 'invalid': '1'}),
Bbox(1, 1, 2, 2),
Bbox(1, 1, 2, 2, label=0),
]
),
], categories=[])
], categories=['face'])

with TestDir() as test_dir:
WiderFaceConverter.convert(source_dataset, test_dir, save_images=True)
Expand Down Expand Up @@ -161,40 +152,40 @@ def test_can_import(self):
DatasetItem(id='0_Parade_image_01', subset='train',
image=np.ones((10, 15, 3)),
annotations=[
Bbox(1, 2, 2, 2, attributes={
Bbox(1, 2, 2, 2, label=0, attributes={
'blur': '0', 'expression': '0', 'illumination': '0',
'occluded': '0', 'pose': '0', 'invalid': '0'}),
Label(0),
Label(1),
]
),
DatasetItem(id='1_Handshaking_image_02', subset='train',
image=np.ones((10, 15, 3)),
annotations=[
Bbox(1, 1, 2, 2, attributes={
Bbox(1, 1, 2, 2, label=0, attributes={
'blur': '0', 'expression': '0', 'illumination': '1',
'occluded': '0', 'pose': '0', 'invalid': '0'}),
Bbox(5, 1, 2, 2, attributes={
Bbox(5, 1, 2, 2, label=0, attributes={
'blur': '0', 'expression': '0', 'illumination': '1',
'occluded': '0', 'pose': '0', 'invalid': '0'}),
Label(1),
Label(2),
]
),
DatasetItem(id='0_Parade_image_03', subset='val',
image=np.ones((10, 15, 3)),
annotations=[
Bbox(0, 0, 1, 1, attributes={
Bbox(0, 0, 1, 1, label=0, attributes={
'blur': '2', 'expression': '0', 'illumination': '0',
'occluded': '0', 'pose': '2', 'invalid': '0'}),
Bbox(3, 2, 1, 2, attributes={
Bbox(3, 2, 1, 2, label=0, attributes={
'blur': '0', 'expression': '0', 'illumination': '0',
'occluded': '1', 'pose': '0', 'invalid': '0'}),
Bbox(5, 6, 1, 1, attributes={
Bbox(5, 6, 1, 1, label=0, attributes={
'blur': '2', 'expression': '0', 'illumination': '0',
'occluded': '0', 'pose': '2', 'invalid': '0'}),
Label(0),
Label(1),
]
),
], categories= ['Parade', 'Handshaking'])
], categories= ['face', 'Parade', 'Handshaking'])

dataset = Dataset.import_from(DUMMY_DATASET_DIR, 'wider_face')

Expand Down