Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Video Datamodules #676

Merged
merged 125 commits into from
Nov 18, 2022
Merged

Video Datamodules #676

merged 125 commits into from
Nov 18, 2022

Conversation

djdameln
Copy link
Contributor

@djdameln djdameln commented Nov 3, 2022

Description

  • Adds video datamodules.
  • Introduces VideoAnomalibDataset class, which serves as the base class for all video datasets.
  • Adds UCSDped and Avenue datasets as first video anomaly datasets.
  • The VideoAnomalibDataset contains a samples dataframe, similar to the AnomalibDataset, but it lists the video files instead of the image files. This helps ensure that frames from the same video file always stay together in the same subset after splitting or subsampling.
  • The central component of the VideoAnomalibDataset is a new entity called the ClipsIndexer. This class is based on torchvision's VideoClips, and creates a list of consecutive sub-videos (referred to as clips). When the indexer object is instantiated, it indexes all clips that can be extracted from the videos in the dataset, so that the ith clip in the dataset can be retrieved by calling clips_indexer.get_item(i). When the dataset is a validation or test set, the output of the ClipsIndexer also contains a ground truth mask for each frame in the clip.
  • The number of frames in each clip and the number of frames between consecutive clips can be configured using the constructor arguments clip_length_in_frames and frames_between_clips, which are also exposed to the config.yaml. In the special case where clip_length_in_frames is set to 1, the video dataset behaves like an image dataset, which allows us to use the dataset with any of the current Anomalib models.
  • Since different datasets use different file structures for storing the masks and videos, a subclass which inherits from ClipsIndexer will need to be implemented for every new dataset that gets added to the library. The concrete subclass should implement at least the get_masks method, which defines how a mask is retrieved from the file system given the index of the video and the indices of the frames within the video. If the videos of the dataset are not stored in standard video files (e.g. the videos are folders of images where each image is a single video frame), the subclass should also override get_clips and _compute_frame_pts (see UCSDpedClipsIndexer for an example).

Known issues

  • Visualization only supported for single-frame, and only as separate image files (as opposed to re-composing the video).
  • No inference support.

Example configs

dataset:
  name: ucsd
  format: ucsdped
  path: ./datasets/ucsdped
  category: UCSDped2
  task: segmentation
  clip_length_in_frames: 1
  frames_between_clips: 1
  image_size: 256
  train_batch_size: 32
  eval_batch_size: 32
  num_workers: 8
  transform_config:
    train: null
    eval: null
  val_split_mode: same_as_test # options: [same_as_test, from_test]
  tiling:
    apply: false
    tile_size: null
    stride: null
    remove_border_count: 0
    use_random_tiling: False
    random_tile_count: 16
dataset:
  name: avenue
  format: avenue
  path: ./datasets/avenue
  gt_dir: ./datasets/avenue/ground_truth_demo
  task: segmentation
  clip_length_in_frames: 1
  frames_between_clips: 10
  image_size: 256
  train_batch_size: 32
  eval_batch_size: 32
  num_workers: 8
  transform_config:
    train: null
    eval: null
  val_split_mode: same_as_test # options: [same_as_test, from_test]
  tiling:
    apply: false
    tile_size: null
    stride: null
    remove_border_count: 0
    use_random_tiling: False
    random_tile_count: 16

Changes

  • Bug fix (non-breaking change which fixes an issue)
  • Refactor (non-breaking change which refactors the code base)
  • New feature (non-breaking change which adds functionality)
  • Breaking change (fix or feature that would cause existing functionality to not work as expected)
  • This change requires a documentation update

Checklist

  • My code follows the pre-commit style and check guidelines of this project.
  • I have performed a self-review of my code
  • I have commented my code, particularly in hard-to-understand areas
  • I have made corresponding changes to the documentation
  • My changes generate no new warnings
  • I have added tests that prove my fix is effective or that my feature works
  • New and existing tests pass locally with my changes

Copy link
Collaborator

@ashwinvaidya17 ashwinvaidya17 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I have the same comment but not sure if github is updating on my browser. I cannot see the new comments you have added on the web ui but I can see them in the notification email.

tests/pre_merge/datasets/test_datamodule.py Outdated Show resolved Hide resolved
Copy link
Collaborator

@ashwinvaidya17 ashwinvaidya17 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks!

@samet-akcay samet-akcay merged commit f66c84e into feature/datamodules Nov 18, 2022
@samet-akcay samet-akcay deleted the da/video-datasets branch November 18, 2022 18:37
djdameln added a commit that referenced this pull request Jan 6, 2023
* New datamodules design (#572)

* move sample generation to datamodule instead of dataset

* move sample generation from init to setup

* remove inference stage and add base classes

* replace dataset classes with AnomalibDataset

* move setup to base class, create samples as class method

* update docstrings

* refactor btech to new format

* allow training with no anomalous data

* remove MVTec name from comment

* raise NotImplementedError in base class

* allow both png and bmp images for btech

* use label_index to check if dataset contains anomalous images

* refactor getitem in dataset class

* use iloc for indexing

* move dataloader getters to base class

* refactor to add validate stage in setup

* implement alternative datamodules solution

* small improvements

* improve design

* remove unused constructor arguments

* adapt btech to new design

* add prepare_data method for mvtec

* implement more generic random splitting function

* update docstrings for folder module

* ensure type consistency when performing operations on dataset

* change imports

* change variable names

* replace pass with NotImplementedError

* allow training on folder without test images

* use relative path for normal_test_dir

* fix dataset tests

* update validation set parameter in configs

* change default argument

* use setter for samples

* hint options for val_split_mode

* update assert message and docstring

* revert name change dataset vs datamodule

* typing and docstrings

* remove samples argument from dataset constructor

* val/test -> eval

* remove Split.Full from enum

* sort samples when setting

* update warn message

* formatting

* use setter when creating samples in dataset classes

* add tests for new dataset class

* add test case for label aware random split

* update parameter name in inferencers

* move _setup implementation to base class

* address codacy issues

* fix pylint issues

* codacy

* update example dataset config in docs

* fix test

* move base classes to separate files (avoid circular import)

* add base classes

* update docstring

* fix imports

* validation_split_mode -> val_split_mode

* update docs

* Update anomalib/data/base/dataset.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* get length from self.samples

* assert unique indices

* check is_setup for individual datasets

Co-authored-by: Joao P C Bertoldo <[email protected]>

* remove assert in __getitem_\

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Update anomalib/data/btech.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* clearer assert message

* clarify list inversion in comment

* comments and typing

* validate contents of samples dataframe before setting

* add file paths check

* add seed to random_split function

* fix expected columns

* fix typo

* add seed parameter to datamodules

* set global seed in test entrypoint

* add NONE option to valsplitmode

* clarify setup behaviour in docstring

* fix typo

Co-authored-by: Joao P C Bertoldo <[email protected]>

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Video Datamodules (#676)

* move sample generation to datamodule instead of dataset

* move sample generation from init to setup

* remove inference stage and add base classes

* replace dataset classes with AnomalibDataset

* move setup to base class, create samples as class method

* update docstrings

* refactor btech to new format

* allow training with no anomalous data

* remove MVTec name from comment

* raise NotImplementedError in base class

* allow both png and bmp images for btech

* use label_index to check if dataset contains anomalous images

* refactor getitem in dataset class

* use iloc for indexing

* move dataloader getters to base class

* refactor to add validate stage in setup

* implement alternative datamodules solution

* small improvements

* improve design

* remove unused constructor arguments

* adapt btech to new design

* add prepare_data method for mvtec

* implement more generic random splitting function

* update docstrings for folder module

* ensure type consistency when performing operations on dataset

* change imports

* change variable names

* replace pass with NotImplementedError

* allow training on folder without test images

* use relative path for normal_test_dir

* fix dataset tests

* update validation set parameter in configs

* change default argument

* use setter for samples

* hint options for val_split_mode

* update assert message and docstring

* revert name change dataset vs datamodule

* typing and docstrings

* remove samples argument from dataset constructor

* val/test -> eval

* remove Split.Full from enum

* sort samples when setting

* update warn message

* formatting

* use setter when creating samples in dataset classes

* add tests for new dataset class

* add test case for label aware random split

* update parameter name in inferencers

* move _setup implementation to base class

* address codacy issues

* fix pylint issues

* codacy

* update example dataset config in docs

* fix test

* move base classes to separate files (avoid circular import)

* add base classes

* update docstring

* fix imports

* validation_split_mode -> val_split_mode

* update docs

* Update anomalib/data/base/dataset.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* get length from self.samples

* assert unique indices

* check is_setup for individual datasets

Co-authored-by: Joao P C Bertoldo <[email protected]>

* remove assert in __getitem_\

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Update anomalib/data/btech.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* clearer assert message

* clarify list inversion in comment

* comments and typing

* validate contents of samples dataframe before setting

* add file paths check

* add seed to random_split function

* fix expected columns

* fix typo

* add pedestrian and avenue datasets and video utils

* add seed parameter to datamodules

* set global seed in test entrypoint

* add NONE option to valsplitmode

* clarify setup behaviour in docstring

* add basic visualization for video datasets

* simplify ucsdped implementation

* add ucsd and avenue to __all__

* add default value for task

* add tests for ucsd and avenue

* add tests for video dataset and utils

* add download info for avenue dataset

* add download info for ucsd pedestrian dataset

* more consistent naming

* fix path to masks folder in gt dir

* pass original image in batch to facilitate visualization

* convert mask files for avenue

* suppress warning due to torchvision bug

* fix bug in avenue masks

* store visualizations for each video in separate folder

* rename parameters

* add warning for clip_length > 1

* fix dataset tests

* fix labels tensor shape bug

* add pyav to requirements

* add description for avenue dataset

* use pathlib

* Update anomalib/data/avenue.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/avenue.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/utils/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/base/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/base/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/ucsd_ped.py

Co-authored-by: Samet Akcay <[email protected]>

* import video dataset from base

* fix bug when collecting ucsd samples

* clean up datamodules tests

* fix tests

* remove redundant test cases

* retrieve masks as numpy array

* use pathlib

* variable name

* pathlib

* use preprocesser from arguments

* fix indexing bug

Co-authored-by: Joao P C Bertoldo <[email protected]>
Co-authored-by: Samet Akcay <[email protected]>

* Update lightning_inference.py

* Make `val split ratio` configurable (#760)

* make val split ratio configurable

* use DeprecationWarning, update config key

* Add support for Detection task type (#732)

* add basic support for detection task

* use enum for task type

* formatting

* small bugfix

* add unit tests for bounding box conversion

* update error message

* use as_tensor

* typing and docstring

* explicit keyword arguments

* simplify bbox handling in video dataset

* docstring consistency

* add missing licenses

* add whitespace for readability

* add missing license

* Update anomalib/data/utils/boxes.py

Co-authored-by: Samet Akcay <[email protected]>

* Revert "Update anomalib/data/utils/boxes.py"

This reverts commit cec6138.

* add test case for custom collate function

* docstring

* add integration tests for detection dataloading

* extend and clean up datamodules tests

* add detection task type to visualizer tests

* only show pred_boxes during inference

* add detection support for torch inference

* add detection support for openvino inference

* test inference for all task types

* pylint

Co-authored-by: Samet Akcay <[email protected]>

* [Datamodules] Update deprecation messages (#764)

* update deprecation messages

* raise warnings as DeprecationWarning

* Improve image source parsing for Folder dataset (#784)

* mask -> mask_dir

* properly handle absolute and relative paths

* make root path parameter optional

* formatting

* path -> root

* update docs

* remove options hint for name parameter

* refactor function

* Update anomalib/config/config.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/config/config.py

Co-authored-by: Samet Akcay <[email protected]>

* make root and abnormal_dir optional

* Update anomalib/data/folder.py

Co-authored-by: Samet Akcay <[email protected]>

Co-authored-by: Samet Akcay <[email protected]>

* Synthetic anomaly for testing and validation (#634)

* move sample generation to datamodule instead of dataset

* move sample generation from init to setup

* remove inference stage and add base classes

* replace dataset classes with AnomalibDataset

* move setup to base class, create samples as class method

* update docstrings

* refactor btech to new format

* allow training with no anomalous data

* remove MVTec name from comment

* raise NotImplementedError in base class

* allow both png and bmp images for btech

* use label_index to check if dataset contains anomalous images

* refactor getitem in dataset class

* use iloc for indexing

* move dataloader getters to base class

* refactor to add validate stage in setup

* implement alternative datamodules solution

* small improvements

* improve design

* remove unused constructor arguments

* adapt btech to new design

* add prepare_data method for mvtec

* implement more generic random splitting function

* update docstrings for folder module

* ensure type consistency when performing operations on dataset

* change imports

* change variable names

* replace pass with NotImplementedError

* allow training on folder without test images

* use relative path for normal_test_dir

* fix dataset tests

* update validation set parameter in configs

* change default argument

* use setter for samples

* hint options for val_split_mode

* update assert message and docstring

* revert name change dataset vs datamodule

* typing and docstrings

* remove samples argument from dataset constructor

* val/test -> eval

* remove Split.Full from enum

* sort samples when setting

* update warn message

* formatting

* use setter when creating samples in dataset classes

* add tests for new dataset class

* add test case for label aware random split

* update parameter name in inferencers

* move _setup implementation to base class

* address codacy issues

* fix pylint issues

* codacy

* update example dataset config in docs

* fix test

* move base classes to separate files (avoid circular import)

* add synthetic dataset class

* move augmenter to data directory

* add base classes

* update docstring

* use synthetic dataset in base datamodule

* fix imports

* clean up synthetic anomaly dataset implementation

* fix mistake in augmenter

* change default split ratio

* remove accidentally added file

* validation_split_mode -> val_split_mode

* update docs

* Update anomalib/data/base/dataset.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* get length from self.samples

* assert unique indices

* check is_setup for individual datasets

Co-authored-by: Joao P C Bertoldo <[email protected]>

* remove assert in __getitem_\

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Update anomalib/data/btech.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* clearer assert message

* clarify list inversion in comment

* comments and typing

* validate contents of samples dataframe before setting

* add file paths check

* add seed to random_split function

* fix expected columns

* fix typo

* add seed parameter to datamodules

* set global seed in test entrypoint

* add NONE option to valsplitmode

* clarify setup behaviour in docstring

* add logging message

* use val_split_ratio for synthetic validation set

* pathlib

* make synthetic anomaly available for test set

* update configs

* add tests

* simplify test set splitting logic

* update docstring

* add missing licence

* split_normal_and_anomalous -> split_by_label

* VideoAnomalib -> AnomalibVideo

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Bugfixes for Datamodules feature branch (#800)

* properly handle NoneType mask_dir and add test case

* fix wrong deprecation handling

* Deprecate PreProcessor (#795)

* deprecate PreProcessor

* update configs

* update deprecation messages

* update video dataset

* update inference dataset

* move transforms to data module

* update and extend transform tests

* fix cyclic import

* add validity checks for image size and center crop

* pass image size as tuple

* update path to get_transforms

* update error message

* fix center crop tuple conversion

* update inferencers

* remove draem transform config

* update changelog

* fix cyclic import

* add crop size vs image size check

* improve readability

* mypy

* use enum to configure input normalization

* update lightning inference

* update inference dataset

* [Datamodules] Fix bug in bbox score to image score conversion (#803)

handle empty box predictions

* Improve handling of `test_split_mode='none'` and `val_split_mode='none'` (#801)

* enable none as split mode

* use get to retrieve config keys

* update deprecation message and config key

* fix to float transform

* Detection improvements (#820)

* apply pixel threshold to bbox detections

* allow visualizing normal boxes

* normalize box scores

* fix bbox logic in base anomaly module

* boxes_scores -> box_scores

* fix inferencers

* update changelog

* update csflow config to new format

* remove unused imports

* line length

* suppress bandit warnings

* use torch rng in augmenter

* use tuple instead of list

* add missing params to dosctring

* add missing licence information

* COLS -> COLUMNS

* typing and variable naming

* remove duplicate parameter in docstring

* im_dir -> image_dir

* typing and docstring

* typing

* ValSplitMode -> ValidationSplitMode

* add missing licence

* rename variable

* remove empty comment

* remove unused class attribute

* [Detection] Compute box score when generating boxes from masks (#828)

* infer box scores from anomaly maps

* discard single pixel boxes

* revert discard single pixel boxes

* add test case for bbox scores

* update torch inferencer

* minor refactor

* revert val_split_mode -> validation_split_mode

Co-authored-by: Joao P C Bertoldo <[email protected]>
Co-authored-by: Samet Akcay <[email protected]>
djdameln added a commit that referenced this pull request Jan 6, 2023
* New datamodules design (#572)

* move sample generation to datamodule instead of dataset

* move sample generation from init to setup

* remove inference stage and add base classes

* replace dataset classes with AnomalibDataset

* move setup to base class, create samples as class method

* update docstrings

* refactor btech to new format

* allow training with no anomalous data

* remove MVTec name from comment

* raise NotImplementedError in base class

* allow both png and bmp images for btech

* use label_index to check if dataset contains anomalous images

* refactor getitem in dataset class

* use iloc for indexing

* move dataloader getters to base class

* refactor to add validate stage in setup

* implement alternative datamodules solution

* small improvements

* improve design

* remove unused constructor arguments

* adapt btech to new design

* add prepare_data method for mvtec

* implement more generic random splitting function

* update docstrings for folder module

* ensure type consistency when performing operations on dataset

* change imports

* change variable names

* replace pass with NotImplementedError

* allow training on folder without test images

* use relative path for normal_test_dir

* fix dataset tests

* update validation set parameter in configs

* change default argument

* use setter for samples

* hint options for val_split_mode

* update assert message and docstring

* revert name change dataset vs datamodule

* typing and docstrings

* remove samples argument from dataset constructor

* val/test -> eval

* remove Split.Full from enum

* sort samples when setting

* update warn message

* formatting

* use setter when creating samples in dataset classes

* add tests for new dataset class

* add test case for label aware random split

* update parameter name in inferencers

* move _setup implementation to base class

* address codacy issues

* fix pylint issues

* codacy

* update example dataset config in docs

* fix test

* move base classes to separate files (avoid circular import)

* add base classes

* update docstring

* fix imports

* validation_split_mode -> val_split_mode

* update docs

* Update anomalib/data/base/dataset.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* get length from self.samples

* assert unique indices

* check is_setup for individual datasets

Co-authored-by: Joao P C Bertoldo <[email protected]>

* remove assert in __getitem_\

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Update anomalib/data/btech.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* clearer assert message

* clarify list inversion in comment

* comments and typing

* validate contents of samples dataframe before setting

* add file paths check

* add seed to random_split function

* fix expected columns

* fix typo

* add seed parameter to datamodules

* set global seed in test entrypoint

* add NONE option to valsplitmode

* clarify setup behaviour in docstring

* fix typo

Co-authored-by: Joao P C Bertoldo <[email protected]>

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Video Datamodules (#676)

* move sample generation to datamodule instead of dataset

* move sample generation from init to setup

* remove inference stage and add base classes

* replace dataset classes with AnomalibDataset

* move setup to base class, create samples as class method

* update docstrings

* refactor btech to new format

* allow training with no anomalous data

* remove MVTec name from comment

* raise NotImplementedError in base class

* allow both png and bmp images for btech

* use label_index to check if dataset contains anomalous images

* refactor getitem in dataset class

* use iloc for indexing

* move dataloader getters to base class

* refactor to add validate stage in setup

* implement alternative datamodules solution

* small improvements

* improve design

* remove unused constructor arguments

* adapt btech to new design

* add prepare_data method for mvtec

* implement more generic random splitting function

* update docstrings for folder module

* ensure type consistency when performing operations on dataset

* change imports

* change variable names

* replace pass with NotImplementedError

* allow training on folder without test images

* use relative path for normal_test_dir

* fix dataset tests

* update validation set parameter in configs

* change default argument

* use setter for samples

* hint options for val_split_mode

* update assert message and docstring

* revert name change dataset vs datamodule

* typing and docstrings

* remove samples argument from dataset constructor

* val/test -> eval

* remove Split.Full from enum

* sort samples when setting

* update warn message

* formatting

* use setter when creating samples in dataset classes

* add tests for new dataset class

* add test case for label aware random split

* update parameter name in inferencers

* move _setup implementation to base class

* address codacy issues

* fix pylint issues

* codacy

* update example dataset config in docs

* fix test

* move base classes to separate files (avoid circular import)

* add base classes

* update docstring

* fix imports

* validation_split_mode -> val_split_mode

* update docs

* Update anomalib/data/base/dataset.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* get length from self.samples

* assert unique indices

* check is_setup for individual datasets

Co-authored-by: Joao P C Bertoldo <[email protected]>

* remove assert in __getitem_\

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Update anomalib/data/btech.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* clearer assert message

* clarify list inversion in comment

* comments and typing

* validate contents of samples dataframe before setting

* add file paths check

* add seed to random_split function

* fix expected columns

* fix typo

* add pedestrian and avenue datasets and video utils

* add seed parameter to datamodules

* set global seed in test entrypoint

* add NONE option to valsplitmode

* clarify setup behaviour in docstring

* add basic visualization for video datasets

* simplify ucsdped implementation

* add ucsd and avenue to __all__

* add default value for task

* add tests for ucsd and avenue

* add tests for video dataset and utils

* add download info for avenue dataset

* add download info for ucsd pedestrian dataset

* more consistent naming

* fix path to masks folder in gt dir

* pass original image in batch to facilitate visualization

* convert mask files for avenue

* suppress warning due to torchvision bug

* fix bug in avenue masks

* store visualizations for each video in separate folder

* rename parameters

* add warning for clip_length > 1

* fix dataset tests

* fix labels tensor shape bug

* add pyav to requirements

* add description for avenue dataset

* use pathlib

* Update anomalib/data/avenue.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/avenue.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/utils/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/base/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/base/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/ucsd_ped.py

Co-authored-by: Samet Akcay <[email protected]>

* import video dataset from base

* fix bug when collecting ucsd samples

* clean up datamodules tests

* fix tests

* remove redundant test cases

* retrieve masks as numpy array

* use pathlib

* variable name

* pathlib

* use preprocesser from arguments

* fix indexing bug

Co-authored-by: Joao P C Bertoldo <[email protected]>
Co-authored-by: Samet Akcay <[email protected]>

* Update lightning_inference.py

* Make `val split ratio` configurable (#760)

* make val split ratio configurable

* use DeprecationWarning, update config key

* Add support for Detection task type (#732)

* add basic support for detection task

* use enum for task type

* formatting

* small bugfix

* add unit tests for bounding box conversion

* update error message

* use as_tensor

* typing and docstring

* explicit keyword arguments

* simplify bbox handling in video dataset

* docstring consistency

* add missing licenses

* add whitespace for readability

* add missing license

* Update anomalib/data/utils/boxes.py

Co-authored-by: Samet Akcay <[email protected]>

* Revert "Update anomalib/data/utils/boxes.py"

This reverts commit cec6138.

* add test case for custom collate function

* docstring

* add integration tests for detection dataloading

* extend and clean up datamodules tests

* add detection task type to visualizer tests

* only show pred_boxes during inference

* add detection support for torch inference

* add detection support for openvino inference

* test inference for all task types

* pylint

Co-authored-by: Samet Akcay <[email protected]>

* [Datamodules] Update deprecation messages (#764)

* update deprecation messages

* raise warnings as DeprecationWarning

* Improve image source parsing for Folder dataset (#784)

* mask -> mask_dir

* properly handle absolute and relative paths

* make root path parameter optional

* formatting

* path -> root

* update docs

* remove options hint for name parameter

* refactor function

* Update anomalib/config/config.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/config/config.py

Co-authored-by: Samet Akcay <[email protected]>

* make root and abnormal_dir optional

* Update anomalib/data/folder.py

Co-authored-by: Samet Akcay <[email protected]>

Co-authored-by: Samet Akcay <[email protected]>

* Synthetic anomaly for testing and validation (#634)

* move sample generation to datamodule instead of dataset

* move sample generation from init to setup

* remove inference stage and add base classes

* replace dataset classes with AnomalibDataset

* move setup to base class, create samples as class method

* update docstrings

* refactor btech to new format

* allow training with no anomalous data

* remove MVTec name from comment

* raise NotImplementedError in base class

* allow both png and bmp images for btech

* use label_index to check if dataset contains anomalous images

* refactor getitem in dataset class

* use iloc for indexing

* move dataloader getters to base class

* refactor to add validate stage in setup

* implement alternative datamodules solution

* small improvements

* improve design

* remove unused constructor arguments

* adapt btech to new design

* add prepare_data method for mvtec

* implement more generic random splitting function

* update docstrings for folder module

* ensure type consistency when performing operations on dataset

* change imports

* change variable names

* replace pass with NotImplementedError

* allow training on folder without test images

* use relative path for normal_test_dir

* fix dataset tests

* update validation set parameter in configs

* change default argument

* use setter for samples

* hint options for val_split_mode

* update assert message and docstring

* revert name change dataset vs datamodule

* typing and docstrings

* remove samples argument from dataset constructor

* val/test -> eval

* remove Split.Full from enum

* sort samples when setting

* update warn message

* formatting

* use setter when creating samples in dataset classes

* add tests for new dataset class

* add test case for label aware random split

* update parameter name in inferencers

* move _setup implementation to base class

* address codacy issues

* fix pylint issues

* codacy

* update example dataset config in docs

* fix test

* move base classes to separate files (avoid circular import)

* add synthetic dataset class

* move augmenter to data directory

* add base classes

* update docstring

* use synthetic dataset in base datamodule

* fix imports

* clean up synthetic anomaly dataset implementation

* fix mistake in augmenter

* change default split ratio

* remove accidentally added file

* validation_split_mode -> val_split_mode

* update docs

* Update anomalib/data/base/dataset.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* get length from self.samples

* assert unique indices

* check is_setup for individual datasets

Co-authored-by: Joao P C Bertoldo <[email protected]>

* remove assert in __getitem_\

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Update anomalib/data/btech.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* clearer assert message

* clarify list inversion in comment

* comments and typing

* validate contents of samples dataframe before setting

* add file paths check

* add seed to random_split function

* fix expected columns

* fix typo

* add seed parameter to datamodules

* set global seed in test entrypoint

* add NONE option to valsplitmode

* clarify setup behaviour in docstring

* add logging message

* use val_split_ratio for synthetic validation set

* pathlib

* make synthetic anomaly available for test set

* update configs

* add tests

* simplify test set splitting logic

* update docstring

* add missing licence

* split_normal_and_anomalous -> split_by_label

* VideoAnomalib -> AnomalibVideo

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Bugfixes for Datamodules feature branch (#800)

* properly handle NoneType mask_dir and add test case

* fix wrong deprecation handling

* Deprecate PreProcessor (#795)

* deprecate PreProcessor

* update configs

* update deprecation messages

* update video dataset

* update inference dataset

* move transforms to data module

* update and extend transform tests

* fix cyclic import

* add validity checks for image size and center crop

* pass image size as tuple

* update path to get_transforms

* update error message

* fix center crop tuple conversion

* update inferencers

* remove draem transform config

* update changelog

* fix cyclic import

* add crop size vs image size check

* improve readability

* mypy

* use enum to configure input normalization

* update lightning inference

* update inference dataset

* [Datamodules] Fix bug in bbox score to image score conversion (#803)

handle empty box predictions

* Improve handling of `test_split_mode='none'` and `val_split_mode='none'` (#801)

* enable none as split mode

* use get to retrieve config keys

* update deprecation message and config key

* fix to float transform

* Detection improvements (#820)

* apply pixel threshold to bbox detections

* allow visualizing normal boxes

* normalize box scores

* fix bbox logic in base anomaly module

* boxes_scores -> box_scores

* fix inferencers

* update changelog

* update csflow config to new format

* remove unused imports

* line length

* refactor make_mvtec_dataset to improve flexibility

* add visa dataset

* move download and extract functionality to shared location

* move visa subset splitting to separate method

* update changelog

* add tests for visa dataset

* suppress bandit url warning

* update test

* address PR comments

* suppress bandit warnings

* use torch rng in augmenter

* fix logic in prepare_data

* add comments

* cleaner zipfile import

* address PR comments

* use tuple instead of list

* add missing params to dosctring

* add missing licence information

* COLS -> COLUMNS

* typing and variable naming

* remove duplicate parameter in docstring

* im_dir -> image_dir

* typing and docstring

* typing

* ValSplitMode -> ValidationSplitMode

* add missing licence

* rename variable

* remove empty comment

* remove unused class attribute

* [Detection] Compute box score when generating boxes from masks (#828)

* infer box scores from anomaly maps

* discard single pixel boxes

* revert discard single pixel boxes

* add test case for bbox scores

* update torch inferencer

* minor refactor

* revert val_split_mode -> validation_split_mode

* use empty string instead of nan as empty mask path

* typing

Co-authored-by: Joao P C Bertoldo <[email protected]>
Co-authored-by: Samet Akcay <[email protected]>
djdameln added a commit that referenced this pull request Jan 6, 2023
* fix pylint issues

* codacy

* update example dataset config in docs

* fix test

* move base classes to separate files (avoid circular import)

* add base classes

* update docstring

* fix imports

* validation_split_mode -> val_split_mode

* update docs

* Update anomalib/data/base/dataset.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* get length from self.samples

* assert unique indices

* check is_setup for individual datasets

Co-authored-by: Joao P C Bertoldo <[email protected]>

* remove assert in __getitem_\

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Update anomalib/data/btech.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* clearer assert message

* clarify list inversion in comment

* comments and typing

* validate contents of samples dataframe before setting

* add file paths check

* add seed to random_split function

* fix expected columns

* fix typo

* add pedestrian and avenue datasets and video utils

* add seed parameter to datamodules

* set global seed in test entrypoint

* add NONE option to valsplitmode

* clarify setup behaviour in docstring

* Created rbad directory

* Keep refactoring region-extractor

* rename new_image_sizes to transformed_image_sizes

* Renamed the variables in region extractor

* post-process function in region extractor

* Refactored tile-boxes function

* Added feature extractor

* Add main.py

* Added feature extractor to tests

* Update the jupyter notebook

* Uncomment loa weights from region.py

* Add feature and region extractors

* Finished feature-extractor implementation

* Rename the algo as rkde

* New datamodules design (#572)

* move sample generation to datamodule instead of dataset

* move sample generation from init to setup

* remove inference stage and add base classes

* replace dataset classes with AnomalibDataset

* move setup to base class, create samples as class method

* update docstrings

* refactor btech to new format

* allow training with no anomalous data

* remove MVTec name from comment

* raise NotImplementedError in base class

* allow both png and bmp images for btech

* use label_index to check if dataset contains anomalous images

* refactor getitem in dataset class

* use iloc for indexing

* move dataloader getters to base class

* refactor to add validate stage in setup

* implement alternative datamodules solution

* small improvements

* improve design

* remove unused constructor arguments

* adapt btech to new design

* add prepare_data method for mvtec

* implement more generic random splitting function

* update docstrings for folder module

* ensure type consistency when performing operations on dataset

* change imports

* change variable names

* replace pass with NotImplementedError

* allow training on folder without test images

* use relative path for normal_test_dir

* fix dataset tests

* update validation set parameter in configs

* change default argument

* use setter for samples

* hint options for val_split_mode

* update assert message and docstring

* revert name change dataset vs datamodule

* typing and docstrings

* remove samples argument from dataset constructor

* val/test -> eval

* remove Split.Full from enum

* sort samples when setting

* update warn message

* formatting

* use setter when creating samples in dataset classes

* add tests for new dataset class

* add test case for label aware random split

* update parameter name in inferencers

* move _setup implementation to base class

* address codacy issues

* fix pylint issues

* codacy

* update example dataset config in docs

* fix test

* move base classes to separate files (avoid circular import)

* add base classes

* update docstring

* fix imports

* validation_split_mode -> val_split_mode

* update docs

* Update anomalib/data/base/dataset.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* get length from self.samples

* assert unique indices

* check is_setup for individual datasets

Co-authored-by: Joao P C Bertoldo <[email protected]>

* remove assert in __getitem_\

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Update anomalib/data/btech.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* clearer assert message

* clarify list inversion in comment

* comments and typing

* validate contents of samples dataframe before setting

* add file paths check

* add seed to random_split function

* fix expected columns

* fix typo

* add seed parameter to datamodules

* set global seed in test entrypoint

* add NONE option to valsplitmode

* clarify setup behaviour in docstring

* fix typo

Co-authored-by: Joao P C Bertoldo <[email protected]>

Co-authored-by: Joao P C Bertoldo <[email protected]>

* add basic visualization for video datasets

* simplify ucsdped implementation

* TODO: Investigate torch_model

* add ucsd and avenue to __all__

* add default value for task

* add tests for ucsd and avenue

* add tests for video dataset and utils

* add download info for avenue dataset

* add download info for ucsd pedestrian dataset

* more consistent naming

* fix path to masks folder in gt dir

* pass original image in batch to facilitate visualization

* convert mask files for avenue

* suppress warning due to torchvision bug

* fix bug in avenue masks

* store visualizations for each video in separate folder

* rename parameters

* add warning for clip_length > 1

* fix dataset tests

* fix labels tensor shape bug

* add pyav to requirements

* Add TODO notes

* add todo notes

* add description for avenue dataset

* use pathlib

* Update anomalib/data/avenue.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/avenue.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/utils/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/base/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/base/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/ucsd_ped.py

Co-authored-by: Samet Akcay <[email protected]>

* import video dataset from base

* fix bug when collecting ucsd samples

* clean up datamodules tests

* fix tests

* remove redundant test cases

* add test case for normality model

* retrieve masks as numpy array

* use pathlib

* variable name

* pathlib

* use preprocesser from arguments

* fix indexing bug

* Video Datamodules (#676)

* move sample generation to datamodule instead of dataset

* move sample generation from init to setup

* remove inference stage and add base classes

* replace dataset classes with AnomalibDataset

* move setup to base class, create samples as class method

* update docstrings

* refactor btech to new format

* allow training with no anomalous data

* remove MVTec name from comment

* raise NotImplementedError in base class

* allow both png and bmp images for btech

* use label_index to check if dataset contains anomalous images

* refactor getitem in dataset class

* use iloc for indexing

* move dataloader getters to base class

* refactor to add validate stage in setup

* implement alternative datamodules solution

* small improvements

* improve design

* remove unused constructor arguments

* adapt btech to new design

* add prepare_data method for mvtec

* implement more generic random splitting function

* update docstrings for folder module

* ensure type consistency when performing operations on dataset

* change imports

* change variable names

* replace pass with NotImplementedError

* allow training on folder without test images

* use relative path for normal_test_dir

* fix dataset tests

* update validation set parameter in configs

* change default argument

* use setter for samples

* hint options for val_split_mode

* update assert message and docstring

* revert name change dataset vs datamodule

* typing and docstrings

* remove samples argument from dataset constructor

* val/test -> eval

* remove Split.Full from enum

* sort samples when setting

* update warn message

* formatting

* use setter when creating samples in dataset classes

* add tests for new dataset class

* add test case for label aware random split

* update parameter name in inferencers

* move _setup implementation to base class

* address codacy issues

* fix pylint issues

* codacy

* update example dataset config in docs

* fix test

* move base classes to separate files (avoid circular import)

* add base classes

* update docstring

* fix imports

* validation_split_mode -> val_split_mode

* update docs

* Update anomalib/data/base/dataset.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* get length from self.samples

* assert unique indices

* check is_setup for individual datasets

Co-authored-by: Joao P C Bertoldo <[email protected]>

* remove assert in __getitem_\

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Update anomalib/data/btech.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* clearer assert message

* clarify list inversion in comment

* comments and typing

* validate contents of samples dataframe before setting

* add file paths check

* add seed to random_split function

* fix expected columns

* fix typo

* add pedestrian and avenue datasets and video utils

* add seed parameter to datamodules

* set global seed in test entrypoint

* add NONE option to valsplitmode

* clarify setup behaviour in docstring

* add basic visualization for video datasets

* simplify ucsdped implementation

* add ucsd and avenue to __all__

* add default value for task

* add tests for ucsd and avenue

* add tests for video dataset and utils

* add download info for avenue dataset

* add download info for ucsd pedestrian dataset

* more consistent naming

* fix path to masks folder in gt dir

* pass original image in batch to facilitate visualization

* convert mask files for avenue

* suppress warning due to torchvision bug

* fix bug in avenue masks

* store visualizations for each video in separate folder

* rename parameters

* add warning for clip_length > 1

* fix dataset tests

* fix labels tensor shape bug

* add pyav to requirements

* add description for avenue dataset

* use pathlib

* Update anomalib/data/avenue.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/avenue.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/utils/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/base/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/base/video.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/data/ucsd_ped.py

Co-authored-by: Samet Akcay <[email protected]>

* import video dataset from base

* fix bug when collecting ucsd samples

* clean up datamodules tests

* fix tests

* remove redundant test cases

* retrieve masks as numpy array

* use pathlib

* variable name

* pathlib

* use preprocesser from arguments

* fix indexing bug

Co-authored-by: Joao P C Bertoldo <[email protected]>
Co-authored-by: Samet Akcay <[email protected]>

* properly handle batch processing

* include batch index in rois tensor

* return rkde results as lists

* update default rkde config

* add basic support for detection task

* use enum for task type

* formatting

* small bugfix

* add unit tests for bounding box conversion

* update error message

* use as_tensor

* typing and docstring

* explicit keyword arguments

* simplify bbox handling in video dataset

* docstring consistency

* add missing licenses

* add whitespace for readability

* add missing license

* Update anomalib/data/utils/boxes.py

Co-authored-by: Samet Akcay <[email protected]>

* Revert "Update anomalib/data/utils/boxes.py"

This reverts commit cec6138.

* add test case for custom collate function

* docstring

* add integration tests for detection dataloading

* extend and clean up datamodules tests

* add detection task type to visualizer tests

* Update lightning_inference.py

* only show pred_boxes during inference

* add detection support for torch inference

* add detection support for openvino inference

* test inference for all task types

* pylint

* Make `val split ratio` configurable (#760)

* make val split ratio configurable

* use DeprecationWarning, update config key

* Add support for Detection task type (#732)

* add basic support for detection task

* use enum for task type

* formatting

* small bugfix

* add unit tests for bounding box conversion

* update error message

* use as_tensor

* typing and docstring

* explicit keyword arguments

* simplify bbox handling in video dataset

* docstring consistency

* add missing licenses

* add whitespace for readability

* add missing license

* Update anomalib/data/utils/boxes.py

Co-authored-by: Samet Akcay <[email protected]>

* Revert "Update anomalib/data/utils/boxes.py"

This reverts commit cec6138.

* add test case for custom collate function

* docstring

* add integration tests for detection dataloading

* extend and clean up datamodules tests

* add detection task type to visualizer tests

* only show pred_boxes during inference

* add detection support for torch inference

* add detection support for openvino inference

* test inference for all task types

* pylint

Co-authored-by: Samet Akcay <[email protected]>

* [Datamodules] Update deprecation messages (#764)

* update deprecation messages

* raise warnings as DeprecationWarning

* update rkde

* Improve image source parsing for Folder dataset (#784)

* mask -> mask_dir

* properly handle absolute and relative paths

* make root path parameter optional

* formatting

* path -> root

* update docs

* remove options hint for name parameter

* refactor function

* Update anomalib/config/config.py

Co-authored-by: Samet Akcay <[email protected]>

* Update anomalib/config/config.py

Co-authored-by: Samet Akcay <[email protected]>

* make root and abnormal_dir optional

* Update anomalib/data/folder.py

Co-authored-by: Samet Akcay <[email protected]>

Co-authored-by: Samet Akcay <[email protected]>

* Synthetic anomaly for testing and validation (#634)

* move sample generation to datamodule instead of dataset

* move sample generation from init to setup

* remove inference stage and add base classes

* replace dataset classes with AnomalibDataset

* move setup to base class, create samples as class method

* update docstrings

* refactor btech to new format

* allow training with no anomalous data

* remove MVTec name from comment

* raise NotImplementedError in base class

* allow both png and bmp images for btech

* use label_index to check if dataset contains anomalous images

* refactor getitem in dataset class

* use iloc for indexing

* move dataloader getters to base class

* refactor to add validate stage in setup

* implement alternative datamodules solution

* small improvements

* improve design

* remove unused constructor arguments

* adapt btech to new design

* add prepare_data method for mvtec

* implement more generic random splitting function

* update docstrings for folder module

* ensure type consistency when performing operations on dataset

* change imports

* change variable names

* replace pass with NotImplementedError

* allow training on folder without test images

* use relative path for normal_test_dir

* fix dataset tests

* update validation set parameter in configs

* change default argument

* use setter for samples

* hint options for val_split_mode

* update assert message and docstring

* revert name change dataset vs datamodule

* typing and docstrings

* remove samples argument from dataset constructor

* val/test -> eval

* remove Split.Full from enum

* sort samples when setting

* update warn message

* formatting

* use setter when creating samples in dataset classes

* add tests for new dataset class

* add test case for label aware random split

* update parameter name in inferencers

* move _setup implementation to base class

* address codacy issues

* fix pylint issues

* codacy

* update example dataset config in docs

* fix test

* move base classes to separate files (avoid circular import)

* add synthetic dataset class

* move augmenter to data directory

* add base classes

* update docstring

* use synthetic dataset in base datamodule

* fix imports

* clean up synthetic anomaly dataset implementation

* fix mistake in augmenter

* change default split ratio

* remove accidentally added file

* validation_split_mode -> val_split_mode

* update docs

* Update anomalib/data/base/dataset.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* get length from self.samples

* assert unique indices

* check is_setup for individual datasets

Co-authored-by: Joao P C Bertoldo <[email protected]>

* remove assert in __getitem_\

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Update anomalib/data/btech.py

Co-authored-by: Joao P C Bertoldo <[email protected]>

* clearer assert message

* clarify list inversion in comment

* comments and typing

* validate contents of samples dataframe before setting

* add file paths check

* add seed to random_split function

* fix expected columns

* fix typo

* add seed parameter to datamodules

* set global seed in test entrypoint

* add NONE option to valsplitmode

* clarify setup behaviour in docstring

* add logging message

* use val_split_ratio for synthetic validation set

* pathlib

* make synthetic anomaly available for test set

* update configs

* add tests

* simplify test set splitting logic

* update docstring

* add missing licence

* split_normal_and_anomalous -> split_by_label

* VideoAnomalib -> AnomalibVideo

Co-authored-by: Joao P C Bertoldo <[email protected]>

* Bugfixes for Datamodules feature branch (#800)

* properly handle NoneType mask_dir and add test case

* fix wrong deprecation handling

* Deprecate PreProcessor (#795)

* deprecate PreProcessor

* update configs

* update deprecation messages

* update video dataset

* update inference dataset

* move transforms to data module

* update and extend transform tests

* fix cyclic import

* add validity checks for image size and center crop

* pass image size as tuple

* update path to get_transforms

* update error message

* fix center crop tuple conversion

* update inferencers

* remove draem transform config

* update changelog

* fix cyclic import

* add crop size vs image size check

* improve readability

* mypy

* use enum to configure input normalization

* update lightning inference

* update inference dataset

* expose more parameters and fix wrong return format

* fix tdd tests

* update config

* [Datamodules] Fix bug in bbox score to image score conversion (#803)

handle empty box predictions

* update config

* apply pixel threshold to bbox detections

* remove confidence threshold parameter from rkde

* hardcode steepness and offset

* rename variable

* remove unused parameters from config

* Improve handling of `test_split_mode='none'` and `val_split_mode='none'` (#801)

* enable none as split mode

* use get to retrieve config keys

* update deprecation message and config key

* update config with new keys

* remove unused parameter

* set device in rpn stage

* move prediction format conversion to lightning model

* clean up torch model

* move region- and feature-extractor to separate files

* allow visualizing normal boxes

* refactor

* WIP: simplify region extractor

* simplify region extractor

* cleanup and docstrings

* typing

* expose max detections per image parameter

* explain configurable parameters

* fix wrong config value

* remove unnecessary squeeze

* box_likelihood -> rcnn_box_threshold

* update comments

* remove unnecessary typing

* separate density estimation stage from torch model

* improve readability

* change default transform settings

* fix to float transform

* simplify feature extractor

* normalize box scores

* further simplify region extractor

* update comment

* improve prn configurability

* remove unnecessary check

* use enum for roi stage options

* use enum for feature scaling method

* re-order parameters

* clean up model dir

* fix bbox logic in base anomaly module

* update key in output dict

* boxes_scores -> box_scores

* remove notebook

* add comments and todo

* Detection improvements (#820)

* apply pixel threshold to bbox detections

* allow visualizing normal boxes

* normalize box scores

* fix bbox logic in base anomaly module

* boxes_scores -> box_scores

* fix inferencers

* add readme

* update changelog

* update changelog

* update csflow config to new format

* initialize max_length as empty tensor

* include RKDE in model tests

* remove unused imports

* line length

* move kde classifier to shared location

* fix import

* re-use RKDE classifier in DFKDE

* remove old imports

* docstrings

* fix codacy issues

* load feature extractor weights from url

* suppress bandit warnings

* use torch rng in augmenter

* typing

* add fit method to torch model

* fix typo

* use enum when checking stage

* use tuple instead of list

* add missing params to dosctring

* add missing licence information

* COLS -> COLUMNS

* typing and variable naming

* remove duplicate parameter in docstring

* im_dir -> image_dir

* typing and docstring

* typing

* ValSplitMode -> ValidationSplitMode

* add missing licence

* rename variable

* remove empty comment

* remove unused class attribute

* [Detection] Compute box score when generating boxes from masks (#828)

* infer box scores from anomaly maps

* discard single pixel boxes

* revert discard single pixel boxes

* add test case for bbox scores

* update torch inferencer

* minor refactor

* revert val_split_mode -> validation_split_mode

Co-authored-by: Joao P C Bertoldo <[email protected]>
Co-authored-by: Samet <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Config Data Dependencies Pull requests that update a dependency file Post-Processing The components that are related to post-processing Tests Tools
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants