Skip to content

Commit

Permalink
✨ Add Torch Inferencer and Update Openvino and Gradio Inferencers. (#453
Browse files Browse the repository at this point in the history
)

* Add generate_output_image_filename function to anomalib.data.utils

* Base inferencer returns ImageResult object storing all the predictions.

* Modify openvino inferencer

* Revert meta-data being optional in openvino inference.

* Update gradio inference.

* Address pylint issues

* Address pylint issues

* Address mypy issues

* Fix tests

* Fix test

* Address openvino inferencer for classification tasks

* Address PR comments

* Fix inference dataloader path/str type issue

* Rename anomalib.deploy.inferencer.*_inference.py to inferencer.py

* Address Ashwins comments

* Add warning to torch inference

Co-authored-by: someone <[email protected]>
  • Loading branch information
samet-akcay and someone authored Jul 29, 2022
1 parent d0fcad3 commit d16a145
Show file tree
Hide file tree
Showing 17 changed files with 429 additions and 231 deletions.
2 changes: 1 addition & 1 deletion anomalib/data/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,6 @@ def __getitem__(self, index: int) -> Any:
image_filename = self.image_filenames[index]
image = read_image(path=image_filename)
pre_processed = self.pre_process(image=image)
pre_processed["image_path"] = image_filename
pre_processed["image_path"] = str(image_filename)

return pre_processed
11 changes: 9 additions & 2 deletions anomalib/data/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,13 @@

from .download import DownloadProgressBar, hash_check
from .generators import random_2d_perlin
from .image import get_image_filenames, read_image
from .image import generate_output_image_filename, get_image_filenames, read_image

__all__ = ["get_image_filenames", "hash_check", "random_2d_perlin", "read_image", "DownloadProgressBar"]
__all__ = [
"generate_output_image_filename",
"get_image_filenames",
"hash_check",
"random_2d_perlin",
"read_image",
"DownloadProgressBar",
]
110 changes: 105 additions & 5 deletions anomalib/data/utils/image.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
# and limitations under the License.

import math
import warnings
from pathlib import Path
from typing import List, Union

Expand All @@ -25,33 +26,132 @@
from torchvision.datasets.folder import IMG_EXTENSIONS


def get_image_filenames(path: Union[str, Path]) -> List[str]:
def get_image_filenames(path: Union[str, Path]) -> List[Path]:
"""Get image filenames.
Args:
path (Union[str, Path]): Path to image or image-folder.
Returns:
List[str]: List of image filenames
List[Path]: List of image filenames
"""
image_filenames: List[str]
image_filenames: List[Path]

if isinstance(path, str):
path = Path(path)

if path.is_file() and path.suffix in IMG_EXTENSIONS:
image_filenames = [str(path)]
image_filenames = [path]

if path.is_dir():
image_filenames = [str(p) for p in path.glob("**/*") if p.suffix in IMG_EXTENSIONS]
image_filenames = [p for p in path.glob("**/*") if p.suffix in IMG_EXTENSIONS]

if len(image_filenames) == 0:
raise ValueError(f"Found 0 images in {path}")

return image_filenames


def duplicate_filename(path: Union[str, Path]) -> Path:
"""Check and duplicate filename.
This function checks the path and adds a suffix if it already exists on the file system.
Args:
path (Union[str, Path]): Input Path
Examples:
>>> path = Path("datasets/MVTec/bottle/test/broken_large/000.png")
>>> path.exists()
True
If we pass this to ``duplicate_filename`` function we would get the following:
>>> duplicate_filename(path)
PosixPath('datasets/MVTec/bottle/test/broken_large/000_1.png')
Returns:
Path: Duplicated output path.
"""

if isinstance(path, str):
path = Path(path)

i = 0
while True:
duplicated_path = path if i == 0 else path.parent / (path.stem + f"_{i}" + path.suffix)
if not duplicated_path.exists():
break
i += 1

return duplicated_path


def generate_output_image_filename(input_path: Union[str, Path], output_path: Union[str, Path]) -> Path:
"""Generate an output filename to save the inference image.
This function generates an output filaname by checking the input and output filenames. Input path is
the input to infer, and output path is the path to save the output predictions specified by the user.
The function expects ``input_path`` to always be a file, not a directory. ``output_path`` could be a
filename or directory. If it is a filename, the function checks if the specified filename exists on
the file system. If yes, the function calls ``duplicate_filename`` to duplicate the filename to avoid
overwriting the existing file. If ``output_path`` is a directory, this function adds the parent and
filenames of ``input_path`` to ``output_path``.
Args:
input_path (Union[str, Path]): Path to the input image to infer.
output_path (Union[str, Path]): Path to output to save the predictions.
Could be a filename or a directory.
Examples:
>>> input_path = Path("datasets/MVTec/bottle/test/broken_large/000.png")
>>> output_path = Path("datasets/MVTec/bottle/test/broken_large/000.png")
>>> generate_output_image_filename(input_path, output_path)
PosixPath('datasets/MVTec/bottle/test/broken_large/000_1.png')
>>> input_path = Path("datasets/MVTec/bottle/test/broken_large/000.png")
>>> output_path = Path("results/images")
>>> generate_output_image_filename(input_path, output_path)
PosixPath('results/images/broken_large/000.png')
Raises:
ValueError: When the ``input_path`` is not a file.
Returns:
Path: The output filename to save the output predictions from the inferencer.
"""

if isinstance(input_path, str):
input_path = Path(input_path)

if isinstance(output_path, str):
output_path = Path(output_path)

# This function expects an ``input_path`` that is a file. This is to check if output_path
if input_path.is_file() is False:
raise ValueError("input_path is expected to be a file to generate a proper output filename.")

file_path: Path
if output_path.suffix == "":
# If the output is a directory, then add parent directory name
# and filename to the path. This is to ensure we do not overwrite
# images and organize based on the categories.
file_path = output_path / input_path.parent.name / input_path.name
else:
file_path = output_path

# This new ``file_path`` might contain a directory path yet to be created.
# Create the parent directory to avoid such cases.
file_path.parent.mkdir(parents=True, exist_ok=True)

if file_path.is_file():
warnings.warn(f"{output_path} already exists. Renaming the file to avoid overwriting.")
file_path = duplicate_filename(file_path)

return file_path


def read_image(path: Union[str, Path]) -> np.ndarray:
"""Read image from disk in RGB format.
Expand Down
6 changes: 3 additions & 3 deletions anomalib/deploy/inferencers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,8 @@
# See the License for the specific language governing permissions
# and limitations under the License.

from .base_inference import Inferencer
from .openvino_inference import OpenVINOInferencer
from .torch_inference import TorchInferencer
from .base_inferencer import Inferencer
from .openvino_inferencer import OpenVINOInferencer
from .torch_inferencer import TorchInferencer

__all__ = ["Inferencer", "OpenVINOInferencer", "TorchInferencer"]
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, Optional, Tuple, Union, cast
from typing import Any, Dict, Optional, Tuple, Union, cast

import cv2
import numpy as np
Expand All @@ -26,7 +26,7 @@
from torch import Tensor

from anomalib.data.utils import read_image
from anomalib.post_processing import compute_mask, superimpose_anomaly_map
from anomalib.post_processing import ImageResult, compute_mask
from anomalib.post_processing.normalization.cdf import normalize as normalize_cdf
from anomalib.post_processing.normalization.cdf import standardize
from anomalib.post_processing.normalization.min_max import (
Expand Down Expand Up @@ -57,18 +57,16 @@ def forward(self, image: Union[np.ndarray, Tensor]) -> Union[np.ndarray, Tensor]

@abstractmethod
def post_process(
self, predictions: Union[np.ndarray, Tensor], meta_data: Optional[Dict]
) -> Tuple[np.ndarray, float]:
self, predictions: Union[np.ndarray, Tensor], meta_data: Optional[Dict[str, Any]]
) -> Dict[str, Any]:
"""Post-Process."""
raise NotImplementedError

def predict(
self,
image: Union[str, np.ndarray, Path],
superimpose: bool = True,
meta_data: Optional[dict] = None,
overlay_mask: bool = False,
) -> Tuple[np.ndarray, float]:
meta_data: Optional[Dict[str, Any]] = None,
) -> ImageResult:
"""Perform a prediction for a given input image.
The main workflow is (i) pre-processing, (ii) forward-pass, (iii) post-process.
Expand All @@ -77,14 +75,10 @@ def predict(
image (Union[str, np.ndarray]): Input image whose output is to be predicted.
It could be either a path to image or numpy array itself.
superimpose (bool): If this is set to True, output predictions
will be superimposed onto the original image. If false, `predict`
method will return the raw heatmap.
overlay_mask (bool): If this is set to True, output segmentation mask on top of image.
meta_data: Meta-data information such as shape, threshold.
Returns:
np.ndarray: Output predictions to be visualized.
ImageResult: Prediction results to be visualized.
"""
if meta_data is None:
if hasattr(self, "meta_data"):
Expand All @@ -99,16 +93,15 @@ def predict(

processed_image = self.pre_process(image_arr)
predictions = self.forward(processed_image)
anomaly_map, pred_scores = self.post_process(predictions, meta_data=meta_data)

# Overlay segmentation mask using raw predictions
if overlay_mask and meta_data is not None:
image_arr = self._superimpose_segmentation_mask(meta_data, anomaly_map, image_arr)

if superimpose is True:
anomaly_map = superimpose_anomaly_map(anomaly_map, image_arr)
output = self.post_process(predictions, meta_data=meta_data)

return anomaly_map, pred_scores
return ImageResult(
image=image_arr,
pred_score=output["pred_score"],
pred_label=output["pred_label"],
anomaly_map=output["anomaly_map"],
pred_mask=output["pred_mask"],
)

def _superimpose_segmentation_mask(self, meta_data: dict, anomaly_map: np.ndarray, image: np.ndarray):
"""Superimpose segmentation mask on top of image.
Expand All @@ -130,14 +123,14 @@ def _superimpose_segmentation_mask(self, meta_data: dict, anomaly_map: np.ndarra
image[outlines] = [255, 0, 0]
return image

def __call__(self, image: np.ndarray) -> Tuple[np.ndarray, float]:
def __call__(self, image: np.ndarray) -> ImageResult:
"""Call predict on the Image.
Args:
image (np.ndarray): Input Image
Returns:
np.ndarray: Output predictions to be visualized
ImageResult: Prediction results to be visualized.
"""
return self.predict(image)

Expand Down Expand Up @@ -185,9 +178,7 @@ def _normalize(

return anomaly_maps, float(pred_scores)

def _load_meta_data(
self, path: Optional[Union[str, Path]] = None
) -> Union[DictConfig, Dict[str, Union[float, np.ndarray, Tensor]]]:
def _load_meta_data(self, path: Optional[Union[str, Path]] = None) -> Union[DictConfig, Dict]:
"""Loads the meta data from the given path.
Args:
Expand Down
Loading

0 comments on commit d16a145

Please sign in to comment.