Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backport main] adding model level metric in node level #1522

Merged
merged 1 commit into from
Oct 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,9 @@
import org.opensearch.core.xcontent.XContentBuilder;
import org.opensearch.ml.common.FunctionName;
import org.opensearch.ml.stats.MLAlgoStats;
import org.opensearch.ml.stats.MLModelStats;
import org.opensearch.ml.stats.MLNodeLevelStat;
import org.opensearch.ml.stats.MLStatsInput;

public class MLStatsNodeResponse extends BaseNodeResponse implements ToXContentFragment {
/**
Expand All @@ -30,6 +32,12 @@ public class MLStatsNodeResponse extends BaseNodeResponse implements ToXContentF
* Example: {kmeans: { train: { request_count: 1} }}
*/
private Map<FunctionName, MLAlgoStats> algorithmStats;
/**
* Model stats which includes model level stats.
*
* Example: {model_id: { predict: { request_count: 1} }}
*/
private Map<String, MLModelStats> modelStats;

/**
* Constructor
Expand All @@ -45,21 +53,30 @@ public MLStatsNodeResponse(StreamInput in) throws IOException {
if (in.readBoolean()) {
this.algorithmStats = in.readMap(stream -> stream.readEnum(FunctionName.class), MLAlgoStats::new);
}
if (in.readBoolean()) {
this.modelStats = in.readMap(stream -> stream.readOptionalString(), MLModelStats::new);
}
}

public MLStatsNodeResponse(DiscoveryNode node, Map<MLNodeLevelStat, Object> nodeStats) {
super(node);
this.nodeStats = nodeStats;
}

public MLStatsNodeResponse(DiscoveryNode node, Map<MLNodeLevelStat, Object> nodeStats, Map<FunctionName, MLAlgoStats> algorithmStats) {
public MLStatsNodeResponse(
DiscoveryNode node,
Map<MLNodeLevelStat, Object> nodeStats,
Map<FunctionName, MLAlgoStats> algorithmStats,
Map<String, MLModelStats> modelStats
) {
super(node);
this.nodeStats = nodeStats;
this.algorithmStats = algorithmStats;
this.modelStats = modelStats;
}

public boolean isEmpty() {
return getNodeLevelStatSize() == 0 && getAlgorithmStatSize() == 0;
return getNodeLevelStatSize() == 0 && getAlgorithmStatSize() == 0 && getModelStatSize() == 0;
}

/**
Expand Down Expand Up @@ -88,6 +105,12 @@ public void writeTo(StreamOutput out) throws IOException {
} else {
out.writeBoolean(false);
}
if (modelStats != null) {
out.writeBoolean(true);
out.writeMap(modelStats, (stream, v) -> stream.writeOptionalString(v), (stream, stats) -> stats.writeTo(stream));
} else {
out.writeBoolean(false);
}
}

public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
Expand All @@ -97,14 +120,23 @@ public XContentBuilder toXContent(XContentBuilder builder, Params params) throws
}
}
if (algorithmStats != null) {
builder.startObject("algorithms");
builder.startObject(MLStatsInput.ALGORITHMS);
for (Map.Entry<FunctionName, MLAlgoStats> stat : algorithmStats.entrySet()) {
builder.startObject(stat.getKey().name().toLowerCase(Locale.ROOT));
stat.getValue().toXContent(builder, params);
builder.endObject();
}
builder.endObject();
}
if (modelStats != null) {
builder.startObject(MLStatsInput.MODELS);
for (Map.Entry<String, MLModelStats> stat : modelStats.entrySet()) {
builder.startObject(stat.getKey());
stat.getValue().toXContent(builder, params);
builder.endObject();
}
builder.endObject();
}
return builder;
}

Expand All @@ -120,17 +152,35 @@ public int getAlgorithmStatSize() {
return algorithmStats == null ? 0 : algorithmStats.size();
}

public int getModelStatSize() {
return modelStats == null ? 0 : modelStats.size();
}

public boolean hasAlgorithmStats(FunctionName algorithm) {
return algorithmStats == null ? false : algorithmStats.containsKey(algorithm);
return algorithmStats != null && algorithmStats.containsKey(algorithm);
}

public boolean hasModelStats(String modelId) {
return modelStats != null && modelStats.containsKey(modelId);
}

public MLAlgoStats getAlgorithmStats(FunctionName algorithm) {
return algorithmStats == null ? null : algorithmStats.get(algorithm);
}

public MLModelStats getModelStats(String modelId) {
return modelStats == null ? null : modelStats.get(modelId);
}

public void removeAlgorithmStats(FunctionName algorithm) {
if (algorithmStats != null) {
algorithmStats.remove(algorithm);
}
}

public void removeModelStats(String modelId) {
if (modelStats != null) {
modelStats.remove(modelId);
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ public List<MLStatsNodeResponse> readNodesFrom(StreamInput in) throws IOExceptio
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
String nodeId;
DiscoveryNode node;
builder.startObject("nodes");
builder.startObject(NODES_KEY);
for (MLStatsNodeResponse mlStats : getNodes()) {
node = mlStats.getNode();
nodeId = node.getId();
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import org.opensearch.ml.stats.ActionName;
import org.opensearch.ml.stats.MLActionStats;
import org.opensearch.ml.stats.MLAlgoStats;
import org.opensearch.ml.stats.MLModelStats;
import org.opensearch.ml.stats.MLNodeLevelStat;
import org.opensearch.ml.stats.MLStatLevel;
import org.opensearch.ml.stats.MLStats;
Expand Down Expand Up @@ -125,6 +126,22 @@ MLStatsNodeResponse createMLStatsNodeResponse(MLStatsNodesRequest mlStatsNodesRe
}
}

return new MLStatsNodeResponse(clusterService.localNode(), statValues, algorithmStats);
Map<String, MLModelStats> modelStats = new HashMap<>();
// return model level stats
if (mlStatsInput.includeModelStats()) {
for (String modelId : mlStats.getAllModels()) {
if (mlStatsInput.retrieveStatsForModel(modelId)) {
Map<ActionName, MLActionStats> actionStatsMap = new HashMap<>();
for (Map.Entry<ActionName, MLActionStats> entry : mlStats.getModelStats(modelId).entrySet()) {
if (mlStatsInput.retrieveStatsForAction(entry.getKey())) {
actionStatsMap.put(entry.getKey(), entry.getValue());
}
}
modelStats.put(modelId, new MLModelStats(actionStatsMap));
}
}
}

return new MLStatsNodeResponse(clusterService.localNode(), statValues, algorithmStats, modelStats);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -865,6 +865,7 @@ public void deployModel(
mlStats.createCounterStatIfAbsent(functionName, ActionName.DEPLOY, ML_ACTION_REQUEST_COUNT).increment();
mlStats.getStat(MLNodeLevelStat.ML_EXECUTING_TASK_COUNT).increment();
mlStats.getStat(MLNodeLevelStat.ML_REQUEST_COUNT).increment();
mlStats.createModelCounterStatIfAbsent(modelId, ActionName.DEPLOY, ML_ACTION_REQUEST_COUNT).increment();
List<String> workerNodes = mlTask.getWorkerNodes();
if (modelCacheHelper.isModelDeployed(modelId)) {
if (workerNodes != null && workerNodes.size() > 0) {
Expand Down Expand Up @@ -1210,6 +1211,7 @@ public synchronized Map<String, String> undeployModel(String[] modelIds) {
mlStats
.createCounterStatIfAbsent(getModelFunctionName(modelId), ActionName.UNDEPLOY, ML_ACTION_REQUEST_COUNT)
.increment();
mlStats.createModelCounterStatIfAbsent(modelId, ActionName.UNDEPLOY, ML_ACTION_REQUEST_COUNT).increment();
} else {
modelUndeployStatus.put(modelId, NOT_FOUND);
}
Expand All @@ -1221,6 +1223,7 @@ public synchronized Map<String, String> undeployModel(String[] modelIds) {
modelUndeployStatus.put(modelId, UNDEPLOYED);
mlStats.getStat(MLNodeLevelStat.ML_DEPLOYED_MODEL_COUNT).decrement();
mlStats.createCounterStatIfAbsent(getModelFunctionName(modelId), ActionName.UNDEPLOY, ML_ACTION_REQUEST_COUNT).increment();
mlStats.createModelCounterStatIfAbsent(modelId, ActionName.UNDEPLOY, ML_ACTION_REQUEST_COUNT).increment();
removeModel(modelId);
}
}
Expand Down
64 changes: 64 additions & 0 deletions plugin/src/main/java/org/opensearch/ml/stats/MLModelStats.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
/*
* Copyright OpenSearch Contributors
* SPDX-License-Identifier: Apache-2.0
*/

package org.opensearch.ml.stats;

import java.io.IOException;
import java.util.Locale;
import java.util.Map;

import org.opensearch.core.common.io.stream.StreamInput;
import org.opensearch.core.common.io.stream.StreamOutput;
import org.opensearch.core.common.io.stream.Writeable;
import org.opensearch.core.xcontent.ToXContentFragment;
import org.opensearch.core.xcontent.XContentBuilder;

public class MLModelStats implements ToXContentFragment, Writeable {

/**
* Model stats.
* Key: Model Id.
* Value: MLActionStats which contains action stat/value map.
*
* Example: {predict: { request_count: 1}}
*/
private Map<ActionName, MLActionStats> modelStats;

public MLModelStats(StreamInput in) throws IOException {
if (in.readBoolean()) {
this.modelStats = in.readMap(stream -> stream.readEnum(ActionName.class), MLActionStats::new);
}
}

public MLModelStats(Map<ActionName, MLActionStats> modelStats) {
this.modelStats = modelStats;
}

@Override
public void writeTo(StreamOutput out) throws IOException {
if (modelStats != null && modelStats.size() > 0) {
out.writeBoolean(true);
out.writeMap(modelStats, (stream, v) -> stream.writeEnum(v), (stream, stats) -> stats.writeTo(stream));
} else {
out.writeBoolean(false);
}
}

@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
if (modelStats != null && modelStats.size() > 0) {
for (Map.Entry<ActionName, MLActionStats> entry : modelStats.entrySet()) {
builder.startObject(entry.getKey().name().toLowerCase(Locale.ROOT));
entry.getValue().toXContent(builder, params);
builder.endObject();
}
}
return builder;
}

public MLActionStats getActionStats(ActionName action) {
return modelStats == null ? null : modelStats.get(action);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ public enum MLStatLevel {
CLUSTER,
NODE,
ALGORITHM,
MODEL,
ACTION;

public static MLStatLevel from(String value) {
Expand Down
28 changes: 28 additions & 0 deletions plugin/src/main/java/org/opensearch/ml/stats/MLStats.java
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ public class MLStats {
@Getter
private Map<Enum, MLStat<?>> stats;
private Map<FunctionName, Map<ActionName, Map<MLActionLevelStat, MLStat>>> algoStats;// {"kmeans":{"train":{"request_count":10}}}
private Map<String, Map<ActionName, Map<MLActionLevelStat, MLStat>>> modelStats;// {"model_id":{"train":{"request_count":10}}}

/**
* Constructor
Expand All @@ -31,6 +32,7 @@ public class MLStats {
public MLStats(Map<Enum, MLStat<?>> stats) {
this.stats = stats;
this.algoStats = new ConcurrentHashMap<>();
this.modelStats = new ConcurrentHashMap<>();
}

/**
Expand Down Expand Up @@ -62,6 +64,12 @@ public MLStat<?> createCounterStatIfAbsent(FunctionName algoName, ActionName act
return createAlgoStatIfAbsent(algoActionStats, stat, () -> new MLStat<>(false, new CounterSupplier()));
}

public MLStat<?> createModelCounterStatIfAbsent(String modelId, ActionName action, MLActionLevelStat stat) {
Map<ActionName, Map<MLActionLevelStat, MLStat>> actionStats = modelStats.computeIfAbsent(modelId, it -> new ConcurrentHashMap<>());
Map<MLActionLevelStat, MLStat> algoActionStats = actionStats.computeIfAbsent(action, it -> new ConcurrentHashMap<>());
return createAlgoStatIfAbsent(algoActionStats, stat, () -> new MLStat<>(false, new CounterSupplier()));
}

public synchronized MLStat<?> createAlgoStatIfAbsent(
Map<MLActionLevelStat, MLStat> algoActionStats,
MLActionLevelStat key,
Expand Down Expand Up @@ -130,7 +138,27 @@ public Map<ActionName, MLActionStats> getAlgorithmStats(FunctionName algoName) {
return algoActionStats;
}

public Map<ActionName, MLActionStats> getModelStats(String modelId) {
if (!modelStats.containsKey(modelId)) {
return null;
}
Map<ActionName, MLActionStats> modelActionStats = new HashMap<>();

for (Map.Entry<ActionName, Map<MLActionLevelStat, MLStat>> entry : modelStats.get(modelId).entrySet()) {
Map<MLActionLevelStat, Object> statsMap = new HashMap<>();
for (Map.Entry<MLActionLevelStat, MLStat> state : entry.getValue().entrySet()) {
statsMap.put(state.getKey(), state.getValue().getValue());
}
modelActionStats.put(entry.getKey(), new MLActionStats(statsMap));
}
return modelActionStats;
}

public FunctionName[] getAllAlgorithms() {
return algoStats.keySet().toArray(new FunctionName[0]);
}

public String[] getAllModels() {
return modelStats.keySet().toArray(new String[0]);
}
}
Loading
Loading