Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Lucene byte vector documentation #4475

Merged
merged 8 commits into from
Jul 14, 2023
Merged
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
116 changes: 97 additions & 19 deletions _search-plugins/knn/knn-index.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,13 +20,13 @@ Method definitions are used when the underlying Approximate k-NN algorithm does
"type": "knn_vector",
"dimension": 4,
"method": {
"name": "hnsw",
"space_type": "l2",
"engine": "nmslib",
"parameters": {
"ef_construction": 128,
"m": 24
}
"name": "hnsw",
"space_type": "l2",
"engine": "nmslib",
"parameters": {
"ef_construction": 128,
"m": 24
}
}
}
```
Expand All @@ -48,14 +48,92 @@ However, if you intend to just use painless scripting or a k-NN score script, yo
}
```

## Method Definitions
### Lucene byte vector

By default, k-NN vectors are `float` vectors, where each dimension is 4 bytes. If you want to save storage space, you can use `byte` vectors with the `lucene` engine. In a `byte` vector, each dimension is a signed 8-bit integer in the [-128, 127] range.

Byte vectors are supported only for the `lucene` engine. They are not supported for the `nmslib` and `faiss` engines.
{: .note}

Introduced in k-NN plugin version 2.9, the optional `data_type` parameter defines the data type of a vector. The default value of this parameter is `float`.

To use a `byte` vector, set the `data_type` parameter to `byte` when creating mappings for an index:

```json
PUT test-index
{
"settings": {
"index": {
"knn": true,
"knn.algo_param.ef_search": 100
}
},
"mappings": {
"properties": {
"my_vector1": {
"type": "knn_vector",
"dimension": 3,
"data_type": "byte",
"method": {
"name": "hnsw",
"space_type": "l2",
"engine": "lucene",
"parameters": {
"ef_construction": 128,
"m": 24
}
}
}
}
}
}
```
{% include copy-curl.html %}

Then ingest documents as usual. Make sure each dimension in the vector is in the supported [-128, 127] range:

```json
PUT test-index/_doc/1
{
"my_vector1": [-126, 28, 127]
}
```
{% include copy-curl.html %}

```json
PUT test-index/_doc/2
{
"my_vector1": [100, -128, 0]
}
```
{% include copy-curl.html %}

When querying, ensure to use a `byte` vector:
kolchfa-aws marked this conversation as resolved.
Show resolved Hide resolved

```json
GET test-index/_search
{
"size": 2,
"query": {
"knn": {
"my_vector1": {
"vector": [26, -120, 99],
"k": 2
}
}
}
}
```
{% include copy-curl.html %}

## Method definitions

A method definition refers to the underlying configuration of the Approximate k-NN algorithm you want to use. Method definitions are used to either create a `knn_vector` field (when the method does not require training) or [create a model during training]({{site.url}}{{site.baseurl}}/search-plugins/knn/api#train-model) that can then be used to [create a `knn_vector` field]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/#building-a-k-nn-index-from-a-model).

A method definition will always contain the name of the method, the space_type the method is built for, the engine
(the library) to use, and a map of parameters.

Mapping Parameter | Required | Default | Updatable | Description
Mapping parameter | Required | Default | Updatable | Description
:--- | :--- | :--- | :--- | :---
`name` | true | n/a | false | The identifier for the nearest neighbor method.
`space_type` | false | l2 | false | The vector space used to calculate the distance between vectors.
Expand All @@ -64,13 +142,13 @@ Mapping Parameter | Required | Default | Updatable | Description

### Supported nmslib methods

Method Name | Requires Training? | Supported Spaces | Description
Method name | Requires training | Supported spaces | Description
:--- | :--- | :--- | :---
`hnsw` | false | l2, innerproduct, cosinesimil, l1, linf | Hierarchical proximity graph approach to Approximate k-NN search. For more details on the algorithm, see this [abstract](https://arxiv.org/abs/1603.09320).

#### HNSW parameters

Parameter Name | Required | Default | Updatable | Description
Parameter name | Required | Default | Updatable | Description
:--- | :--- | :--- | :--- | :---
`ef_construction` | false | 512 | false | The size of the dynamic list used during k-NN graph creation. Higher values lead to a more accurate graph but slower indexing speed.
`m` | false | 16 | false | The number of bidirectional links that the plugin creates for each new element. Increasing and decreasing this value can have a large impact on memory consumption. Keep this value between 2 and 100.
Expand All @@ -80,7 +158,7 @@ For nmslib, *ef_search* is set in the [index settings](#index-settings).

### Supported faiss methods

Method Name | Requires Training? | Supported Spaces | Description
Method name | Requires training | Supported spaces | Description
:--- | :--- | :--- | :---
`hnsw` | false | l2, innerproduct | Hierarchical proximity graph approach to Approximate k-NN search.
`ivf` | true | l2, innerproduct | Bucketing approach where vectors are assigned different buckets based on clustering and, during search, only a subset of the buckets is searched.
Expand All @@ -90,7 +168,7 @@ For hnsw, "innerproduct" is not available when PQ is used.

#### HNSW parameters

Parameter Name | Required | Default | Updatable | Description
Parameter name | Required | Default | Updatable | Description
:--- | :--- | :--- | :--- | :---
`ef_search` | false | 512 | false | The size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches.
`ef_construction` | false | 512 | false | The size of the dynamic list used during k-NN graph creation. Higher values lead to a more accurate graph but slower indexing speed.
Expand All @@ -99,7 +177,7 @@ Parameter Name | Required | Default | Updatable | Description

#### IVF parameters

Parameter Name | Required | Default | Updatable | Description
Parameter name | Required | Default | Updatable | Description
:--- | :--- | :--- | :--- | :---
`nlist` | false | 4 | false | Number of buckets to partition vectors into. Higher values may lead to more accurate searches at the expense of memory and training latency. For more information about choosing the right value, refer to [Guidelines to choose an index](https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index).
`nprobes` | false | 1 | false | Number of buckets to search during query. Higher values lead to more accurate but slower searches.
Expand All @@ -116,13 +194,13 @@ Training data can be composed of either the same data that is going to be ingest

### Supported Lucene methods

Method Name | Requires Training? | Supported Spaces | Description
Method name | Requires Training | Supported spaces | Description
:--- | :--- | :--- | :---
`hnsw` | false | l2, cosinesimil | Hierarchical proximity graph approach to Approximate k-NN search.

#### HNSW parameters

Parameter Name | Required | Default | Updatable | Description
Parameter name | Required | Default | Updatable | Description
:--- | :--- | :--- | :--- | :---
`ef_construction` | false | 512 | false | The size of the dynamic list used during k-NN graph creation. Higher values lead to a more accurate graph but slower indexing speed.<br>The Lucene engine uses the proprietary term "beam_width" to describe this function, which corresponds directly to "ef_construction". To be consistent throughout OpenSearch documentation, we retain the term "ef_construction" to label this parameter.
`m` | false | 16 | false | The number of bidirectional links that the plugin creates for each new element. Increasing and decreasing this value can have a large impact on memory consumption. Keep this value between 2 and 100.<br>The Lucene engine uses the proprietary term "max_connections" to describe this function, which corresponds directly to "m". To be consistent throughout OpenSearch documentation, we retain the term "m" to label this parameter.
Expand Down Expand Up @@ -169,7 +247,7 @@ An example method definition that specifies an encoder may look something like t
}
```

Encoder Name | Requires Training? | Description
Encoder name | Requires training | Description
:--- | :--- | :---
`flat` | false | Encode vectors as floating point arrays. This encoding does not reduce memory footprint.
`pq` | true | Short for product quantization, it is a lossy compression technique that encodes a vector into a fixed size of bytes using clustering, with the goal of minimizing the drop in k-NN search accuracy. From a high level, vectors are broken up into `m` subvectors, and then each subvector is represented by a `code_size` code obtained from a code book produced during training. For more details on product quantization, here is a [great blog post](https://medium.com/dotstar/understanding-faiss-part-2-79d90b1e5388)!
Expand All @@ -191,7 +269,7 @@ If you want to use less memory and index faster than HNSW, while maintaining sim

If memory is a concern, consider adding a PQ encoder to your HNSW or IVF index. Because PQ is a lossy encoding, query quality will drop.

### Memory Estimation
### Memory estimation

In a typical OpenSearch cluster, a certain portion of RAM is set aside for the JVM heap. The k-NN plugin allocates
native library indexes to a portion of the remaining RAM. This portion's size is determined by
Expand Down Expand Up @@ -227,7 +305,7 @@ Additionally, the k-NN plugin introduces several index settings that can be used

At the moment, several parameters defined in the settings are in the deprecation process. Those parameters should be set in the mapping instead of the index settings. Parameters set in the mapping will override the parameters set in the index settings. Setting the parameters in the mapping allows an index to have multiple `knn_vector` fields with different parameters.

Setting | Default | Updateable | Description
Setting | Default | Updatable | Description
:--- | :--- | :--- | :---
`index.knn` | false | false | Whether the index should build native library indexes for the `knn_vector` fields. If set to false, the `knn_vector` fields will be stored in doc values, but Approximate k-NN search functionality will be disabled.
`index.knn.algo_param.ef_search` | 512 | true | The size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches. Only available for nmslib.
Expand Down