Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.06600 #5483

Merged
merged 5 commits into from
Jun 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
272 changes: 272 additions & 0 deletions joss.06600/10.21105.joss.06600.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,272 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240611140049-48b016ba3f8f1c5c607e72b1ae67209f3359f5ce</doi_batch_id>
<timestamp>20240611140049</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>06</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>98</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>OptiCommPy: Open-source Simulation of Fiber Optic
Communications with Python</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Edson Porto</given_name>
<surname>da Silva</surname>
<ORCID>https://orcid.org/0000-0003-4230-9121</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Adolfo Fernandes</given_name>
<surname>Herbster</surname>
<ORCID>https://orcid.org/0000-0001-6194-1160</ORCID>
</person_name>
</contributors>
<publication_date>
<month>06</month>
<day>11</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6600</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06600</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11450597</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6600</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06600</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06600</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06600.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Agrawal2002">
<volume_title>Fiber-optic communication
systems</volume_title>
<author>Agrawal</author>
<cYear>2002</cYear>
<unstructured_citation>Agrawal, G. P. (2002). Fiber-optic
communication systems (3rd ed.). John Wiley &amp;
Sons.</unstructured_citation>
</citation>
<citation key="Marcuse1997a">
<article_title>Application of the Manakov-PMD equation to
studies of signal propagation in optical fibers with randomly varying
birefringence</article_title>
<author>Marcuse</author>
<journal_title>J. Light. Technol.</journal_title>
<issue>9</issue>
<volume>15</volume>
<doi>10.1109/50.622902</doi>
<cYear>1997</cYear>
<unstructured_citation>Marcuse, D., Menyuk, C. R., &amp;
Wai, P. K. A. (1997). Application of the Manakov-PMD equation to studies
of signal propagation in optical fibers with randomly varying
birefringence. J. Light. Technol., 15(9), 1735–1745.
https://doi.org/10.1109/50.622902</unstructured_citation>
</citation>
<citation key="Proakis2001">
<volume_title>Digital communications</volume_title>
<author>Proakis</author>
<cYear>2001</cYear>
<unstructured_citation>Proakis, J. G. (2001). Digital
communications (4th ed.). McGraw Hill.</unstructured_citation>
</citation>
<citation key="Savory2010">
<article_title>Digital coherent optical receivers:
Algorithms and subsystems</article_title>
<author>Savory</author>
<journal_title>IEEE J. Sel. Top. Quantum
Electron.</journal_title>
<issue>5</issue>
<volume>16</volume>
<doi>10.1109/JSTQE.2010.2044751</doi>
<cYear>2010</cYear>
<unstructured_citation>Savory, S. J. (2010). Digital
coherent optical receivers: Algorithms and subsystems. IEEE J. Sel. Top.
Quantum Electron., 16(5), 1164–1179.
https://doi.org/10.1109/JSTQE.2010.2044751</unstructured_citation>
</citation>
<citation key="Essiambre2010">
<article_title>Capacity Limits of Optical Fiber
Networks</article_title>
<author>Essiambre</author>
<journal_title>J. Light. Technol.</journal_title>
<issue>4</issue>
<volume>28</volume>
<doi>10.1109/JLT.2009.2039464</doi>
<cYear>2010</cYear>
<unstructured_citation>Essiambre, R. J., Foschini, G. J.,
Winzer, P. J., Kramer, G., &amp; Goebel, B. (2010). Capacity Limits of
Optical Fiber Networks. J. Light. Technol., 28(4), 662–701.
https://doi.org/10.1109/JLT.2009.2039464</unstructured_citation>
</citation>
<citation key="Sun2020">
<article_title>800G DSP ASIC design using probabilistic
shaping and digital sub-carrier multiplexing</article_title>
<author>Sun</author>
<journal_title>Journal of Lightwave
Technology</journal_title>
<issue>17</issue>
<volume>38</volume>
<doi>10.1109/JLT.2020.2996188</doi>
<cYear>2020</cYear>
<unstructured_citation>Sun, H., Torbatian, M., Karimi, M.,
Maher, R., Thomson, S., Tehrani, M., Gao, Y., Kumpera, A., Soliman, G.,
Kakkar, A., Osman, M., El-Sahn, Z. A., Doggart, C., Hou, W., Sutarwala,
S., Wu, Y., Chitgarha, M. R., Lal, V., Tsai, H.-S., … Kandappan, P.
(2020). 800G DSP ASIC design using probabilistic shaping and digital
sub-carrier multiplexing. Journal of Lightwave Technology, 38(17),
4744–4756.
https://doi.org/10.1109/JLT.2020.2996188</unstructured_citation>
</citation>
<citation key="Alvarado2018">
<article_title>Achievable Information Rates for Fiber
Optics: Applications and Computations</article_title>
<author>Alvarado</author>
<journal_title>J. Light. Technol.</journal_title>
<issue>2</issue>
<volume>36</volume>
<doi>10.1109/JLT.2017.2786351</doi>
<cYear>2018</cYear>
<unstructured_citation>Alvarado, A., Fehenberger, T., Chen,
B., &amp; Willems, F. M. J. (2018). Achievable Information Rates for
Fiber Optics: Applications and Computations. J. Light. Technol., 36(2),
424–439.
https://doi.org/10.1109/JLT.2017.2786351</unstructured_citation>
</citation>
<citation key="Winzer2017">
<article_title>From scaling disparities to integrated
parallelism: A decathlon for a decade</article_title>
<author>Winzer</author>
<journal_title>Journal of Lightwave
Technology</journal_title>
<issue>5</issue>
<volume>35</volume>
<doi>10.1109/JLT.2017.2662082</doi>
<cYear>2017</cYear>
<unstructured_citation>Winzer, P. J., &amp; Neilson, D. T.
(2017). From scaling disparities to integrated parallelism: A decathlon
for a decade. Journal of Lightwave Technology, 35(5), 1099–1115.
https://doi.org/10.1109/JLT.2017.2662082</unstructured_citation>
</citation>
<citation key="robochameleon">
<article_title>Robochameleon: A matlab coding framework and
component library for optical communication systems</article_title>
<author>dtu-dsp</author>
<cYear>2015</cYear>
<unstructured_citation>dtu-dsp. (2015). Robochameleon: A
matlab coding framework and component library for optical communication
systems (Version 0.1).
https://github.com/dtu-dsp/Robochameleon</unstructured_citation>
</citation>
<citation key="OptiSystem">
<article_title>OptiSystem</article_title>
<author>Optiwave</author>
<cYear>2023</cYear>
<unstructured_citation>Optiwave. (2023). OptiSystem.
https://optiwave.com/products/optisystem/</unstructured_citation>
</citation>
<citation key="vpi">
<article_title>VPItransmissionMaker™ optical
systems</article_title>
<author>VPIphotonics</author>
<cYear>2023</cYear>
<unstructured_citation>VPIphotonics. (2023).
VPItransmissionMaker™ optical systems.
https://www.vpiphotonics.com/Tools/OpticalSystems/</unstructured_citation>
</citation>
<citation key="optsim">
<article_title>Synopsys OptSim for optical
communication</article_title>
<author>Synopsys</author>
<cYear>2023</cYear>
<unstructured_citation>Synopsys. (2023). Synopsys OptSim for
optical communication.
https://www.synopsys.com/photonic-solutions/optsim.html/</unstructured_citation>
</citation>
<citation key="optilux">
<article_title>Optilux, the optical simulatr
toolbox.</article_title>
<author>Paolo Serena</author>
<cYear>2021</cYear>
<unstructured_citation>Paolo Serena. (2021). Optilux, the
optical simulatr toolbox.
https://optilux.sourceforge.io/</unstructured_citation>
</citation>
<citation key="cupy_learningsys2017">
<article_title>CuPy: A NumPy-compatible library for NVIDIA
GPU calculations</article_title>
<author>Okuta</author>
<journal_title>Proceedings of workshop on machine learning
systems (LearningSys) in the thirty-first annual conference on neural
information processing systems (NIPS)</journal_title>
<cYear>2017</cYear>
<unstructured_citation>Okuta, R., Unno, Y., Nishino, D.,
Hido, S., &amp; Loomis, C. (2017). CuPy: A NumPy-compatible library for
NVIDIA GPU calculations. Proceedings of Workshop on Machine Learning
Systems (LearningSys) in the Thirty-First Annual Conference on Neural
Information Processing Systems (NIPS).</unstructured_citation>
</citation>
<citation key="cuda">
<article_title>CUDA, release: 10.2.89</article_title>
<author>NVIDIA</author>
<cYear>2020</cYear>
<unstructured_citation>NVIDIA, Vingelmann, P., &amp; Fitzek,
F. H. P. (2020). CUDA, release: 10.2.89.
https://developer.nvidia.com/cuda-toolkit</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06600/10.21105.joss.06600.pdf
Binary file not shown.
Loading