Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.04249 #4729

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
398 changes: 398 additions & 0 deletions joss.04249/10.21105.joss.04249.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,398 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231027T152430-b71dbd3ba811ca57925ec8ba90ce0ab3da3f7053</doi_batch_id>
<timestamp>20231027152430</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>90</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>UncertainSCI: A Python Package for Noninvasive
Parametric Uncertainty Quantification of Simulation Pipelines</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Jess</given_name>
<surname>Tate</surname>
<ORCID>https://orcid.org/0000-0002-2934-1453</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Zexin</given_name>
<surname>Liu</surname>
<ORCID>https://orcid.org/0000-0003-3409-5709</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jake A</given_name>
<surname>Bergquist</surname>
<ORCID>https://orcid.org/0000-0002-4586-6911</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Sumientra</given_name>
<surname>Rampersad</surname>
<ORCID>https://orcid.org/0000-0001-9860-4459</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Dan</given_name>
<surname>White</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Chantel</given_name>
<surname>Charlebois</surname>
<ORCID>https://orcid.org/0000-0002-4139-3539</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Lindsay</given_name>
<surname>Rupp</surname>
<ORCID>https://orcid.org/0000-0002-2688-7688</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Dana H</given_name>
<surname>Brooks</surname>
<ORCID>https://orcid.org/0000-0003-3231-6715</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Rob S</given_name>
<surname>MacLeod</surname>
<ORCID>https://orcid.org/0000-0002-0000-0356</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Akil</given_name>
<surname>Narayan</surname>
<ORCID>https://orcid.org/0000-0002-5914-4207</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>27</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>4249</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.04249</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.8226383</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/4249</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.04249</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.04249</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.04249.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="USCI">
<article_title>UncertainSCI</article_title>
<cYear>2020</cYear>
<unstructured_citation>UncertainSCI. (2020).
https://www.sci.utah.edu/cibc-software/uncertainsci.html</unstructured_citation>
</citation>
<citation key="JDT:Bur2020">
<article_title>Efficient sampling for polynomial chaos-based
uncertainty quantification and sensitivity analysis using weighted
approximate fekete points</article_title>
<author>Burk</author>
<journal_title>International Journal for Numerical Methods
in Biomedical Engineering</journal_title>
<issue>11</issue>
<volume>36</volume>
<doi>10.1002/cnm.3395</doi>
<cYear>2020</cYear>
<unstructured_citation>Burk, K. M., Narayan, A., &amp; Orr,
J. A. (2020). Efficient sampling for polynomial chaos-based uncertainty
quantification and sensitivity analysis using weighted approximate
fekete points. International Journal for Numerical Methods in Biomedical
Engineering, 36(11), e3395.
https://doi.org/10.1002/cnm.3395</unstructured_citation>
</citation>
<citation key="RSM:Swe2011">
<article_title>Cardiac position sensitivity study in the
electrocardiographic forward problem using stochastic collocation and
BEM</article_title>
<author>Swenson</author>
<journal_title>Annals of Biomedical
Engineering</journal_title>
<issue>12</issue>
<volume>30</volume>
<doi>10.1007/s10439-011-0391-5</doi>
<cYear>2011</cYear>
<unstructured_citation>Swenson, D. J., Geneser, S. E.,
Stinstra, J. G., Kirby, R. M., &amp; MacLeod, R. S. (2011). Cardiac
position sensitivity study in the electrocardiographic forward problem
using stochastic collocation and BEM. Annals of Biomedical Engineering,
30(12), 2900–2910.
https://doi.org/10.1007/s10439-011-0391-5</unstructured_citation>
</citation>
<citation key="RSM:Gen2005b">
<article_title>The influence of stochastic organ
conductivity in 2D ECG forward modeling: A stochastic finite element
study</article_title>
<author>Geneser</author>
<journal_title>Proceedings of the IEEE engineering in
medicine and biology society 27th annual international
conference</journal_title>
<doi>10.1109/iembs.2005.1615736</doi>
<cYear>2005</cYear>
<unstructured_citation>Geneser, S. E., Choe, S., Kirby, R.
M., &amp; Macleod, R. S. (2005). The influence of stochastic organ
conductivity in 2D ECG forward modeling: A stochastic finite element
study. Proceedings of the IEEE Engineering in Medicine and Biology
Society 27th Annual International Conference, 5528–5531.
https://doi.org/10.1109/iembs.2005.1615736</unstructured_citation>
</citation>
<citation key="JDT:Tat2021a">
<article_title>Uncertainty quantification of the effects of
segmentation variability in ECGI</article_title>
<author>Tate</author>
<journal_title>Functional imaging and modeling of the
heart</journal_title>
<doi>10.1007/978-3-030-78710-3_49</doi>
<cYear>2019</cYear>
<unstructured_citation>Tate, J. D., Good, W. W., Zemzemi,
N., Boonstra, M., Dam, P. van, Brooks, D. H., Narayan, A., &amp;
MacLeod, R. S. (2019). Uncertainty quantification of the effects of
segmentation variability in ECGI. In Functional imaging and modeling of
the heart (pp. 515–522). Springer-Cham.
https://doi.org/10.1007/978-3-030-78710-3_49</unstructured_citation>
</citation>
<citation key="JDT:Ram2021">
<article_title>Quantification of uncertainty due to tissue
conductivity variability in simulations of brain
stimulation</article_title>
<author>Rampersad</author>
<journal_title>10th international IEEE EMBS conference on
neural engineering</journal_title>
<cYear>2021</cYear>
<unstructured_citation>Rampersad, S., Charlebois, C., Tate,
J. D., MacLeod, R. S., Brooks, D. H., &amp; Narayan, A. (2021, May).
Quantification of uncertainty due to tissue conductivity variability in
simulations of brain stimulation. 10th International IEEE EMBS
Conference on Neural Engineering.</unstructured_citation>
</citation>
<citation key="JAB:Rup2020">
<article_title>Using UncertainSCI to quantify uncertainty in
cardiac simulations</article_title>
<author>Rupp</author>
<journal_title>2020 computing in cardiology</journal_title>
<doi>10.22489/CinC.2020.275</doi>
<cYear>2020</cYear>
<unstructured_citation>Rupp, L. C., Liu, Z., Bergquist, J.
A., Rampersad, S., White, D., Tate, J. D., Brooks, D. H., Narayan, A.,
&amp; MacLeod, R. S. (2020). Using UncertainSCI to quantify uncertainty
in cardiac simulations. 2020 Computing in Cardiology, 1–4.
https://doi.org/10.22489/CinC.2020.275</unstructured_citation>
</citation>
<citation key="JDT:Rup2021">
<article_title>The role of myocardial fiber direction in
epicardial activation patterns via uncertainty
quantification</article_title>
<author>Rupp</author>
<journal_title>Computing in cardiology</journal_title>
<volume>48</volume>
<doi>10.23919/cinc53138.2021.9662950</doi>
<cYear>2021</cYear>
<unstructured_citation>Rupp, L. C., Bergquist, J. A.,
Zenger, B., Gillette, K., Narayan, A., Tate, J. D., Plank, G., &amp;
MacLeod, R. S. (2021). The role of myocardial fiber direction in
epicardial activation patterns via uncertainty quantification. Computing
in Cardiology, 48.
https://doi.org/10.23919/cinc53138.2021.9662950</unstructured_citation>
</citation>
<citation key="JDT:Ber2021">
<article_title>Uncertainty quantification in simulations of
myocardial ischemia</article_title>
<author>Bergquist</author>
<journal_title>Computing in cardiology</journal_title>
<volume>48</volume>
<doi>10.23919/cinc53138.2021.9662837</doi>
<cYear>2021</cYear>
<unstructured_citation>Bergquist, J. A., Zenger, B., Rupp,
L. C., Narayan, A., Tate, J. D., &amp; MacLeod, R. S. (2021).
Uncertainty quantification in simulations of myocardial ischemia.
Computing in Cardiology, 48.
https://doi.org/10.23919/cinc53138.2021.9662837</unstructured_citation>
</citation>
<citation key="JDT:Rah2016">
<article_title>Examining the impact of prior models in
transmural electrophysiological imaging: A hierarchical multiple-model
bayesian approach</article_title>
<author>Rahimi</author>
<journal_title>IEEE Trans. Med. Imag.</journal_title>
<issue>1</issue>
<volume>35</volume>
<doi>10.1109/TMI.2015.2464315</doi>
<issn>0278-0062</issn>
<cYear>2016</cYear>
<unstructured_citation>Rahimi, A., Sapp, J., Xu, J.,
Bajorski, P., Horáček, M., &amp; Wang, L. (2016). Examining the impact
of prior models in transmural electrophysiological imaging: A
hierarchical multiple-model bayesian approach. IEEE Trans. Med. Imag.,
35(1), 229–243.
https://doi.org/10.1109/TMI.2015.2464315</unstructured_citation>
</citation>
<citation key="JDT:Tat2021c">
<article_title>Uncertainty quantification in brain
stimulation using UncertainSCI</article_title>
<author>Tate</author>
<journal_title>Brain Stimulation: Basic, Translational, and
Clinical Research in Neuromodulation</journal_title>
<issue>6</issue>
<volume>14</volume>
<doi>10.1016/j.brs.2021.10.226</doi>
<cYear>2021</cYear>
<unstructured_citation>Tate, J. D., Rampersad, S.,
Charlebois, C., Liu, Z., Bergquist, J. A., White, D., Rupp, L. C.,
Brooks, D. H., Narayan, A., &amp; MacLeod, R. S. (2021). Uncertainty
quantification in brain stimulation using UncertainSCI. Brain
Stimulation: Basic, Translational, and Clinical Research in
Neuromodulation, 14(6), 1659–1660.
https://doi.org/10.1016/j.brs.2021.10.226</unstructured_citation>
</citation>
<citation key="JDT:Xu2014">
<article_title>Variational bayesian electrophysiological
imaging of myocardial infarction.</article_title>
<author>Xu</author>
<journal_title>Med Image Comput Comput Assist
Interv</journal_title>
<issue>Pt 2</issue>
<volume>17</volume>
<doi>10.1007/978-3-319-10470-6_66</doi>
<cYear>2014</cYear>
<unstructured_citation>Xu, J., Sapp, J. L., Dehaghani, A.
R., Gao, F., &amp; Wang, L. (2014). Variational bayesian
electrophysiological imaging of myocardial infarction. Med Image Comput
Comput Assist Interv, 17(Pt 2), 529–537.
https://doi.org/10.1007/978-3-319-10470-6_66</unstructured_citation>
</citation>
<citation key="ACN:Xiu2010">
<volume_title>Numerical Methods for Stochastic Computations:
A Spectral Method Approach</volume_title>
<author>Xiu</author>
<doi>10.1007/978-3-319-10470-6_66</doi>
<isbn>0-691-14212-2</isbn>
<cYear>2010</cYear>
<unstructured_citation>Xiu, D. (2010). Numerical Methods for
Stochastic Computations: A Spectral Method Approach. Princeton
University Press.
https://doi.org/10.1007/978-3-319-10470-6_66</unstructured_citation>
</citation>
<citation key="ACN:Ras2004">
<article_title>Gaussian Processes in Machine
Learning</article_title>
<author>Rasmussen</author>
<journal_title>Advanced Lectures on Machine
Learning</journal_title>
<doi>10.1007/978-3-540-28650-9_4</doi>
<isbn>978-3-540-28650-9</isbn>
<cYear>2004</cYear>
<unstructured_citation>Rasmussen, C. E. (2004). Gaussian
Processes in Machine Learning. In Advanced Lectures on Machine Learning
(pp. 63–71). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-28650-9_4</unstructured_citation>
</citation>
<citation key="ACN:Guo2018">
<article_title>Weighted Approximate Fekete Points: Sampling
for Least-Squares Polynomial Approximation</article_title>
<author>Guo</author>
<journal_title>SIAM Journal on Scientific
Computing</journal_title>
<issue>1</issue>
<volume>40</volume>
<doi>10.1137/17M1140960</doi>
<issn>1064-8275</issn>
<cYear>2018</cYear>
<unstructured_citation>Guo, L., Narayan, A., Yan, L., &amp;
Zhou, T. (2018). Weighted Approximate Fekete Points: Sampling for
Least-Squares Polynomial Approximation. SIAM Journal on Scientific
Computing, 40(1), A366–A387.
https://doi.org/10.1137/17M1140960</unstructured_citation>
</citation>
<citation key="ACN:Coh2017">
<article_title>Optimal weighted least-squares
methods</article_title>
<author>Cohen</author>
<journal_title>SMAI Journal of Computational
Mathematics</journal_title>
<volume>3</volume>
<doi>10.5802/smai-jcm.24</doi>
<issn>2426-8399</issn>
<cYear>2017</cYear>
<unstructured_citation>Cohen, A., &amp; Migliorati, G.
(2017). Optimal weighted least-squares methods. SMAI Journal of
Computational Mathematics, 3, 181–203.
https://doi.org/10.5802/smai-jcm.24</unstructured_citation>
</citation>
<citation key="ACN:Nar2018">
<article_title>Computation of induced orthogonal polynomial
distributions</article_title>
<author>Narayan</author>
<journal_title>Electronic Transactions on Numerical
Analysis</journal_title>
<volume>50</volume>
<doi>10.1553/etna_vol50s71</doi>
<cYear>2018</cYear>
<unstructured_citation>Narayan, A. (2018). Computation of
induced orthogonal polynomial distributions. Electronic Transactions on
Numerical Analysis, 50, 71–97.
https://doi.org/10.1553/etna_vol50s71</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading