Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.05595 #4522

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
287 changes: 287 additions & 0 deletions joss.05595/10.21105.joss.05595.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,287 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20230831T190242-1572e9845ac6207c1429ee0391dc77273f4cef96</doi_batch_id>
<timestamp>20230831190242</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>08</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>88</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>GaussianRandomFields.jl: A Julia package to generate
and sample from Gaussian random fields</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Pieterjan</given_name>
<surname>Robbe</surname>
<ORCID>https://orcid.org/0000-0002-6254-8245</ORCID>
</person_name>
</contributors>
<publication_date>
<month>08</month>
<day>31</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5595</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05595</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.8306255</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5595</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05595</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05595</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05595.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="bezanson2017">
<article_title>Julia: A fresh approach to numerical
computing</article_title>
<author>Bezanson</author>
<journal_title>SIAM review</journal_title>
<issue>1</issue>
<volume>59</volume>
<doi>10.1137/141000671</doi>
<cYear>2017</cYear>
<unstructured_citation>Bezanson, J., Edelman, A., Karpinski,
S., &amp; Shah, V. B. (2017). Julia: A fresh approach to numerical
computing. SIAM Review, 59(1), 65–98.
https://doi.org/10.1137/141000671</unstructured_citation>
</citation>
<citation key="bishop2006">
<volume_title>Pattern recognition and machine
learning</volume_title>
<author>Bishop</author>
<volume>4</volume>
<cYear>2006</cYear>
<unstructured_citation>Bishop, C. M., &amp; Nasrabadi, N. M.
(2006). Pattern recognition and machine learning (Vol.
4).</unstructured_citation>
</citation>
<citation key="blondeel2020">
<article_title>P-refined multilevel quasi-Monte Carlo for
Galerkin finite element methods with applications in civil
engineering</article_title>
<author>Blondeel</author>
<journal_title>Algorithms</journal_title>
<issue>5</issue>
<volume>13</volume>
<doi>10.3390/a13050110</doi>
<cYear>2020</cYear>
<unstructured_citation>Blondeel, P., Robbe, P., Van
hoorickx, C., François, S., Lombaert, G., &amp; Vandewalle, S. (2020).
P-refined multilevel quasi-Monte Carlo for Galerkin finite element
methods with applications in civil engineering. Algorithms, 13(5), 110.
https://doi.org/10.3390/a13050110</unstructured_citation>
</citation>
<citation key="chiang2000">
<article_title>Phase information and the evolution of
cosmological density perturbations</article_title>
<author>Chiang</author>
<journal_title>Monthly Notices of the Royal Astronomical
Society</journal_title>
<issue>4</issue>
<volume>311</volume>
<doi>10.1046/j.1365-8711.2000.03086.x</doi>
<cYear>2000</cYear>
<unstructured_citation>Chiang, L.-Y., &amp; Coles, P.
(2000). Phase information and the evolution of cosmological density
perturbations. Monthly Notices of the Royal Astronomical Society,
311(4), 809–824.
https://doi.org/10.1046/j.1365-8711.2000.03086.x</unstructured_citation>
</citation>
<citation key="chiles2012">
<volume_title>Geostatistics: Modeling spatial
uncertainty</volume_title>
<author>Chiles</author>
<volume>713</volume>
<doi>10.1016/s0098-3004(00)00063-7</doi>
<cYear>2012</cYear>
<unstructured_citation>Chiles, J.-P., &amp; Delfiner, P.
(2012). Geostatistics: Modeling spatial uncertainty (Vol. 713). John
Wiley &amp; Sons.
https://doi.org/10.1016/s0098-3004(00)00063-7</unstructured_citation>
</citation>
<citation key="cui2018">
<article_title>Uncertainty quantification of electronic and
photonic ICs with non-Gaussian correlated process
variations</article_title>
<author>Cui</author>
<journal_title>Proceedings of the international conference
on computer-aided design</journal_title>
<doi>10.1145/3240765.3240860</doi>
<cYear>2018</cYear>
<unstructured_citation>Cui, C., &amp; Zhang, Z. (2018).
Uncertainty quantification of electronic and photonic ICs with
non-Gaussian correlated process variations. Proceedings of the
International Conference on Computer-Aided Design, 1–8.
https://doi.org/10.1145/3240765.3240860</unstructured_citation>
</citation>
<citation key="GSTools">
<article_title>GSTools v1.3: A toolbox for geostatistical
modelling in Python</article_title>
<author>Müller</author>
<journal_title>Geoscientific Model
Development</journal_title>
<issue>7</issue>
<volume>15</volume>
<doi>10.5194/gmd-15-3161-2022</doi>
<cYear>2022</cYear>
<unstructured_citation>Müller, S., Schüler, L., Zech, A.,
&amp; Heße, F. (2022). GSTools v1.3: A toolbox for geostatistical
modelling in Python. Geoscientific Model Development, 15(7), 3161–3182.
https://doi.org/10.5194/gmd-15-3161-2022</unstructured_citation>
</citation>
<citation key="lord2014">
<volume_title>An introduction to computational stochastic
PDEs</volume_title>
<author>Lord</author>
<volume>50</volume>
<cYear>2014</cYear>
<unstructured_citation>Lord, G. J., Powell, C. E., &amp;
Shardlow, T. (2014). An introduction to computational stochastic PDEs
(Vol. 50). Cambridge University Press.</unstructured_citation>
</citation>
<citation key="montero2015">
<volume_title>Spatial and spatio-temporal geostatistical
modeling and kriging</volume_title>
<author>Montero</author>
<cYear>2015</cYear>
<unstructured_citation>Montero, J.-M., Fernández-Avilés, G.,
&amp; Mateu, J. (2015). Spatial and spatio-temporal geostatistical
modeling and kriging. John Wiley &amp; Sons.</unstructured_citation>
</citation>
<citation key="pirot2015">
<article_title>Influence of conceptual model uncertainty on
contaminant transport forecasting in braided river
aquifers</article_title>
<author>Pirot</author>
<journal_title>Journal of Hydrology</journal_title>
<volume>531</volume>
<doi>10.1016/j.jhydrol.2015.07.036</doi>
<cYear>2015</cYear>
<unstructured_citation>Pirot, G., Renard, P., Huber, E.,
Straubhaar, J., &amp; Huggenberger, P. (2015). Influence of conceptual
model uncertainty on contaminant transport forecasting in braided river
aquifers. Journal of Hydrology, 531, 124–141.
https://doi.org/10.1016/j.jhydrol.2015.07.036</unstructured_citation>
</citation>
<citation key="PlotsJL">
<article_title>Plots.jl – A user extendable plotting API for
the Julia programming language</article_title>
<author>Christ</author>
<doi>10.5334/jors.431</doi>
<cYear>2023</cYear>
<unstructured_citation>Christ, S., Schwabeneder, D.,
Rackauckas, C., Borregaard, M. K., &amp; Breloff, T. (2023). Plots.jl –
A user extendable plotting API for the Julia programming language.
https://doi.org/10.5334/jors.431</unstructured_citation>
</citation>
<citation key="randomfields">
<article_title>RandomFields</article_title>
<author>Schlather</author>
<journal_title>CRAN repository</journal_title>
<cYear>2022</cYear>
<unstructured_citation>Schlather, M. (2022). RandomFields.
In CRAN repository. CRAN.
https://cran.r-project.org/web/packages/RandomFields/index.html</unstructured_citation>
</citation>
<citation key="robbe2021">
<article_title>Enhanced multi-index Monte Carlo by means of
multiple semicoarsened multigrid for anisotropic diffusion
problems</article_title>
<author>Robbe</author>
<journal_title>Numerical Linear Algebra with
Applications</journal_title>
<issue>3</issue>
<volume>28</volume>
<doi>10.1002/nla.2281</doi>
<cYear>2021</cYear>
<unstructured_citation>Robbe, P., Nuyens, D., &amp;
Vandewalle, S. (2021). Enhanced multi-index Monte Carlo by means of
multiple semicoarsened multigrid for anisotropic diffusion problems.
Numerical Linear Algebra with Applications, 28(3), e2281.
https://doi.org/10.1002/nla.2281</unstructured_citation>
</citation>
<citation key="stephenson2006">
<article_title>Adaptive Markov random fields for
example-based super-resolution of faces</article_title>
<author>Stephenson</author>
<journal_title>EURASIP Journal on Advances in Signal
Processing</journal_title>
<volume>2006</volume>
<doi>10.1155/asp/2006/31062</doi>
<cYear>2006</cYear>
<unstructured_citation>Stephenson, T. A., &amp; Chen, T.
(2006). Adaptive Markov random fields for example-based super-resolution
of faces. EURASIP Journal on Advances in Signal Processing, 2006, 1–11.
https://doi.org/10.1155/asp/2006/31062</unstructured_citation>
</citation>
<citation key="wu2023">
<article_title>Physics-embedded inverse analysis with
algorithmic differentiation for the Earth’s subsurface</article_title>
<author>Wu</author>
<journal_title>Scientific Reports</journal_title>
<issue>1</issue>
<volume>13</volume>
<doi>10.1038/s41598-022-26898-1</doi>
<cYear>2023</cYear>
<unstructured_citation>Wu, H., Greer, S. Y., &amp; O’Malley,
D. (2023). Physics-embedded inverse analysis with algorithmic
differentiation for the Earth’s subsurface. Scientific Reports, 13(1),
718. https://doi.org/10.1038/s41598-022-26898-1</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading