Skip to content

Commit

Permalink
Merge pull request #5493 from openjournals/joss.06461
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jun 12, 2024
2 parents 0405400 + 2a96478 commit ff7213b
Show file tree
Hide file tree
Showing 6 changed files with 1,014 additions and 0 deletions.
317 changes: 317 additions & 0 deletions joss.06461/10.21105.joss.06461.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,317 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240612142907-d96a058059c9ba2a38fa7086678cf9ef16eddada</doi_batch_id>
<timestamp>20240612142907</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>06</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>98</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>pivmet: an R package proposing pivotal methods for
consensus clustering and mixture modelling</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Leonardo</given_name>
<surname>Egidi</surname>
<ORCID>https://orcid.org/0000-0003-3211-905X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Roberta</given_name>
<surname>Pappada</surname>
<ORCID>https://orcid.org/0000-0002-4852-0561</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Francesco</given_name>
<surname>Pauli</surname>
<ORCID>https://orcid.org/0000-0002-7982-3514</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Nicola</given_name>
<surname>Torelli</surname>
<ORCID>https://orcid.org/0000-0001-9523-5336</ORCID>
</person_name>
</contributors>
<publication_date>
<month>06</month>
<day>12</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6461</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06461</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11243277</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6461</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06461</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06461</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06461.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="egidi2018relabelling">
<article_title>Relabelling in Bayesian mixture models by
pivotal units</article_title>
<author>Egidi</author>
<journal_title>Statistics and Computing</journal_title>
<issue>4</issue>
<volume>28</volume>
<doi>10.1007/s11222-017-9774-2</doi>
<cYear>2018</cYear>
<unstructured_citation>Egidi, L., Pappadà, R., Pauli, F.,
&amp; Torelli, N. (2018). Relabelling in Bayesian mixture models by
pivotal units. Statistics and Computing, 28(4), 957–969.
https://doi.org/10.1007/s11222-017-9774-2</unstructured_citation>
</citation>
<citation key="JMLR02">
<article_title>Cluster ensembles - a knowledge reuse
framework for combining multiple partitions</article_title>
<author>Strehl</author>
<journal_title>Journal on Machine Learning
Research</journal_title>
<volume>3</volume>
<doi>10.1162/153244303321897735</doi>
<cYear>2002</cYear>
<unstructured_citation>Strehl, A., &amp; Ghosh, J. (2002).
Cluster ensembles - a knowledge reuse framework for combining multiple
partitions. Journal on Machine Learning Research, 3, 583–617.
https://doi.org/10.1162/153244303321897735</unstructured_citation>
</citation>
<citation key="stephens2000dealing">
<article_title>Dealing with label switching in mixture
models</article_title>
<author>Stephens</author>
<journal_title>Journal of the Royal Statistical Society:
Series B</journal_title>
<issue>4</issue>
<volume>62</volume>
<doi>10.1111/1467-9868.00265</doi>
<cYear>2000</cYear>
<unstructured_citation>Stephens, M. (2000). Dealing with
label switching in mixture models. Journal of the Royal Statistical
Society: Series B, 62(4), 795–809.
https://doi.org/10.1111/1467-9868.00265</unstructured_citation>
</citation>
<citation key="fruhwirth2001markov">
<article_title>Markov Chain Monte Carlo estimation of
classical and dynamic switching and mixture models</article_title>
<author>Frühwirth-Schnatter</author>
<journal_title>Journal of the American Statistical
Association</journal_title>
<issue>453</issue>
<volume>96</volume>
<doi>10.1198/016214501750333063</doi>
<cYear>2001</cYear>
<unstructured_citation>Frühwirth-Schnatter, S. (2001).
Markov Chain Monte Carlo estimation of classical and dynamic switching
and mixture models. Journal of the American Statistical Association,
96(453), 194–209.
https://doi.org/10.1198/016214501750333063</unstructured_citation>
</citation>
<citation key="papastamoulis2016label">
<article_title>label.switching: An R package for dealing
with the label switching problem in MCMC outputs</article_title>
<author>Papastamoulis</author>
<journal_title>Journal of Statistical Software, Code
Snippets</journal_title>
<issue>1</issue>
<volume>69</volume>
<doi>10.18637/jss.v069.c01</doi>
<cYear>2016</cYear>
<unstructured_citation>Papastamoulis, P. (2016).
label.switching: An R package for dealing with the label switching
problem in MCMC outputs. Journal of Statistical Software, Code Snippets,
69(1), 1–24.
https://doi.org/10.18637/jss.v069.c01</unstructured_citation>
</citation>
<citation key="bayesmix">
<volume_title>Bayesmix: Bayesian mixture models with
JAGS</volume_title>
<author>Gruen</author>
<cYear>2015</cYear>
<unstructured_citation>Gruen, B. (2015). Bayesmix: Bayesian
mixture models with JAGS.
https://CRAN.R-project.org/package=bayesmix</unstructured_citation>
</citation>
<citation key="titterington1985statistical">
<volume_title>Statistical analysis of finite mixture
distributions</volume_title>
<author>Titterington</author>
<doi>10.2307/2531224</doi>
<cYear>1985</cYear>
<unstructured_citation>Titterington, D. M., Smith, A. F.,
&amp; Makov, U. E. (1985). Statistical analysis of finite mixture
distributions. Wiley, New York.
https://doi.org/10.2307/2531224</unstructured_citation>
</citation>
<citation key="richardson1997bayesian">
<article_title>On Bayesian analysis of mixtures with an
unknown number of components (with discussion)</article_title>
<author>Richardson</author>
<journal_title>Journal of the Royal Statistical Society:
series B</journal_title>
<issue>4</issue>
<volume>59</volume>
<doi>10.1111/1467-9868.00095</doi>
<cYear>1997</cYear>
<unstructured_citation>Richardson, S., &amp; Green, P. J.
(1997). On Bayesian analysis of mixtures with an unknown number of
components (with discussion). Journal of the Royal Statistical Society:
Series B, 59(4), 731–792.
https://doi.org/10.1111/1467-9868.00095</unstructured_citation>
</citation>
<citation key="pivmet">
<volume_title>Pivmet: Pivotal Methods for Bayesian
Relabelling and k-means Clustering</volume_title>
<author>Egidi</author>
<cYear>2024</cYear>
<unstructured_citation>Egidi, L., Pappadà, R., Pauli, F.,
&amp; Torelli, N. (2024). Pivmet: Pivotal Methods for Bayesian
Relabelling and k-means Clustering.
https://CRAN.R-project.org/package=pivmet</unstructured_citation>
</citation>
<citation key="rstan">
<article_title>RStan: The R interface to
Stan</article_title>
<author>Stan Development Team</author>
<cYear>2022</cYear>
<unstructured_citation>Stan Development Team. (2022). RStan:
The R interface to Stan. http://mc-stan.org/</unstructured_citation>
</citation>
<citation key="rjags">
<volume_title>Rjags: Bayesian graphical models using
MCMC</volume_title>
<author>Plummer</author>
<cYear>2022</cYear>
<unstructured_citation>Plummer, M. (2022). Rjags: Bayesian
graphical models using MCMC.
https://CRAN.R-project.org/package=rjags</unstructured_citation>
</citation>
<citation key="neal2000markov">
<article_title>Markov Chain sampling methods for Dirichlet
process mixture models</article_title>
<author>Neal</author>
<journal_title>Journal of computational and graphical
statistics</journal_title>
<issue>2</issue>
<volume>9</volume>
<doi>10.1080/10618600.2000.10474879</doi>
<cYear>2000</cYear>
<unstructured_citation>Neal, R. M. (2000). Markov Chain
sampling methods for Dirichlet process mixture models. Journal of
Computational and Graphical Statistics, 9(2), 249–265.
https://doi.org/10.1080/10618600.2000.10474879</unstructured_citation>
</citation>
<citation key="escobar1995bayesian">
<article_title>Bayesian density estimation and inference
using mixtures</article_title>
<author>Escobar</author>
<journal_title>Journal of the American Statistical
Association</journal_title>
<issue>430</issue>
<volume>90</volume>
<doi>10.1080/01621459.1995.10476550</doi>
<cYear>1995</cYear>
<unstructured_citation>Escobar, M. D., &amp; West, M.
(1995). Bayesian density estimation and inference using mixtures.
Journal of the American Statistical Association, 90(430), 577–588.
https://doi.org/10.1080/01621459.1995.10476550</unstructured_citation>
</citation>
<citation key="ferguson1973bayesian">
<article_title>A Bayesian analysis of some nonparametric
problems</article_title>
<author>Ferguson</author>
<journal_title>The Annals of Statistics</journal_title>
<cYear>1973</cYear>
<unstructured_citation>Ferguson, T. S. (1973). A Bayesian
analysis of some nonparametric problems. The Annals of Statistics,
209–230.</unstructured_citation>
</citation>
<citation key="fruhwirth2019here">
<article_title>From here to infinity: Sparse finite versus
Dirichlet process mixtures in model-based clustering</article_title>
<author>Frühwirth-Schnatter</author>
<journal_title>Advances in data analysis and
classification</journal_title>
<issue>1</issue>
<volume>13</volume>
<doi>10.1007/s11634-018-0329-y</doi>
<cYear>2019</cYear>
<unstructured_citation>Frühwirth-Schnatter, S., &amp;
Malsiner-Walli, G. (2019). From here to infinity: Sparse finite versus
Dirichlet process mixtures in model-based clustering. Advances in Data
Analysis and Classification, 13(1), 33–64.
https://doi.org/10.1007/s11634-018-0329-y</unstructured_citation>
</citation>
<citation key="malsiner2016model">
<article_title>Model-based clustering based on sparse finite
Gaussian mixtures</article_title>
<author>Malsiner-Walli</author>
<journal_title>Statistics and computing</journal_title>
<issue>1-2</issue>
<volume>26</volume>
<doi>10.1007/s11222-014-9500-2</doi>
<cYear>2016</cYear>
<unstructured_citation>Malsiner-Walli, G.,
Frühwirth-Schnatter, S., &amp; Grün, B. (2016). Model-based clustering
based on sparse finite Gaussian mixtures. Statistics and Computing,
26(1-2), 303–324.
https://doi.org/10.1007/s11222-014-9500-2</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06461/10.21105.joss.06461.pdf
Binary file not shown.
Loading

0 comments on commit ff7213b

Please sign in to comment.