Skip to content

Commit

Permalink
Merge pull request #3782 from openjournals/joss.04872
Browse files Browse the repository at this point in the history
Merging automatically
editorialbot authored Dec 8, 2022

Verified

This commit was signed with the committer’s verified signature. The key has expired.
sirtoobii Tobias Bossert
2 parents 367a8aa + 878c42b commit 854b3bf
Showing 4 changed files with 1,121 additions and 0 deletions.
436 changes: 436 additions & 0 deletions joss.04872/10.21105.joss.04872.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,436 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20221208T140937-2869c998a097d75a1127756fc65954805afb1538</doi_batch_id>
<timestamp>20221208140937</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org/</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2022</year>
</publication_date>
<journal_volume>
<volume>7</volume>
</journal_volume>
<issue>80</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>SWAMPE: A Shallow-Water Atmospheric Model in Python for
Exoplanets</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Ekaterina</given_name>
<surname>Landgren</surname>
<ORCID>https://orcid.org/0000-0001-6029-5216</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Alice</given_name>
<surname>Nadeau</surname>
<ORCID>https://orcid.org/0000-0003-4325-8047</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>08</day>
<year>2022</year>
</publication_date>
<pages>
<first_page>4872</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.04872</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.7402247</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/4872</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.04872</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.04872</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.04872.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Marshall:1997">
<article_title>Hydrostatic, quasi-hydrostatic, and
nonhydrostatic ocean modeling</article_title>
<author>Marshall</author>
<journal_title>Journal of Geophysical Research:
Oceans</journal_title>
<issue>C3</issue>
<volume>102</volume>
<doi>10.1029/96jc02776</doi>
<cYear>1997</cYear>
<unstructured_citation>Marshall, J., Hill, C., Perelman, L.,
&amp; Adcroft, A. (1997). Hydrostatic, quasi-hydrostatic, and
nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans,
102(C3), 5733–5752.
https://doi.org/10.1029/96jc02776</unstructured_citation>
</citation>
<citation key="Bell:2018">
<article_title>Increased Heat Transport in Ultra-hot Jupiter
Atmospheres through H_{2} Dissociation and Recombination</article_title>
<author>Bell</author>
<journal_title>The Astrophysical Journal
Letters</journal_title>
<issue>2</issue>
<volume>857</volume>
<doi>10.3847/2041-8213/aabcc8</doi>
<cYear>2018</cYear>
<unstructured_citation>Bell, T. J., &amp; Cowan, N. B.
(2018). Increased Heat Transport in Ultra-hot Jupiter Atmospheres
through H_{2} Dissociation and Recombination. The Astrophysical Journal
Letters, 857(2), L20.
https://doi.org/10.3847/2041-8213/aabcc8</unstructured_citation>
</citation>
<citation key="Hack:1992">
<article_title>Description of a global shallow water model
based on the spectral transform method</article_title>
<author>Hack</author>
<cYear>1992</cYear>
<unstructured_citation>Hack, J. J., &amp; Jakob, R. (1992).
Description of a global shallow water model based on the spectral
transform method.</unstructured_citation>
</citation>
<citation key="Langton:2008">
<volume_title>Atmospheric dynamics on strongly irradiated
Jovian planets</volume_title>
<author>Langton</author>
<cYear>2008</cYear>
<unstructured_citation>Langton, J. (2008). Atmospheric
dynamics on strongly irradiated Jovian planets. University of
California, Santa Cruz.</unstructured_citation>
</citation>
<citation key="Feng:2016">
<article_title>The impact of non-uniform thermal structure
on the interpretation of exoplanet emission spectra</article_title>
<author>Feng</author>
<journal_title>The Astrophysical Journal</journal_title>
<issue>1</issue>
<volume>829</volume>
<doi>10.3847/0004-637x/829/1/52</doi>
<cYear>2016</cYear>
<unstructured_citation>Feng, Y. K., Line, M. R., Fortney, J.
J., Stevenson, K. B., Bean, J., Kreidberg, L., &amp; Parmentier, V.
(2016). The impact of non-uniform thermal structure on the
interpretation of exoplanet emission spectra. The Astrophysical Journal,
829(1), 52.
https://doi.org/10.3847/0004-637x/829/1/52</unstructured_citation>
</citation>
<citation key="Menou:2009">
<article_title>Atmospheric Circulation of Hot Jupiters: A
Shallow Three-Dimensional Model</article_title>
<author>Menou</author>
<journal_title>The Astrophysical Journal</journal_title>
<issue>1</issue>
<volume>700</volume>
<doi>10.1088/0004-637X/700/1/887</doi>
<cYear>2009</cYear>
<unstructured_citation>Menou, K., &amp; Rauscher, E. (2009).
Atmospheric Circulation of Hot Jupiters: A Shallow Three-Dimensional
Model. The Astrophysical Journal, 700(1), 887–897.
https://doi.org/10.1088/0004-637X/700/1/887</unstructured_citation>
</citation>
<citation key="Kataria:2016">
<article_title>The Atmospheric Circulation of a
Nine-hot-Jupiter Sample: Probing Circulation and Chemistry over a Wide
Phase Space</article_title>
<author>Kataria</author>
<journal_title>The Astrophysical Journal</journal_title>
<issue>1</issue>
<volume>821</volume>
<doi>10.3847/0004-637X/821/1/9</doi>
<cYear>2016</cYear>
<unstructured_citation>Kataria, T., Sing, D. K., Lewis, N.
K., Visscher, C., Showman, A. P., Fortney, J. J., &amp; Marley, M. S.
(2016). The Atmospheric Circulation of a Nine-hot-Jupiter Sample:
Probing Circulation and Chemistry over a Wide Phase Space. The
Astrophysical Journal, 821(1), 9.
https://doi.org/10.3847/0004-637X/821/1/9</unstructured_citation>
</citation>
<citation key="Parmentier:2013">
<article_title>3D mixing in hot Jupiters atmospheres. I.
Application to the day/night cold trap in HD 209458b</article_title>
<author>Parmentier</author>
<journal_title>Astronomy and Astrophysics</journal_title>
<volume>558</volume>
<doi>10.1051/0004-6361/201321132</doi>
<cYear>2013</cYear>
<unstructured_citation>Parmentier, V., Showman, A. P., &amp;
Lian, Y. (2013). 3D mixing in hot Jupiters atmospheres. I. Application
to the day/night cold trap in HD 209458b. Astronomy and Astrophysics,
558, A91.
https://doi.org/10.1051/0004-6361/201321132</unstructured_citation>
</citation>
<citation key="Cooper:2006">
<article_title>Dynamics and Disequilibrium Carbon Chemistry
in Hot Jupiter Atmospheres, with Application to HD
209458b</article_title>
<author>Cooper</author>
<journal_title>The Astrophysical Journal</journal_title>
<issue>2</issue>
<volume>649</volume>
<doi>10.1086/506312</doi>
<cYear>2006</cYear>
<unstructured_citation>Cooper, C. S., &amp; Showman, A. P.
(2006). Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter
Atmospheres, with Application to HD 209458b. The Astrophysical Journal,
649(2), 1048–1063.
https://doi.org/10.1086/506312</unstructured_citation>
</citation>
<citation key="Dobbs-Dixon:2013">
<article_title>Three-dimensional radiative-hydrodynamical
simulations of the highly irradiated short-period exoplanet HD
189733b</article_title>
<author>Dobbs-Dixon</author>
<journal_title>Monthly Notices of the Royal Astronomical
Society</journal_title>
<issue>4</issue>
<volume>435</volume>
<doi>10.1093/mnras/stt1509</doi>
<cYear>2013</cYear>
<unstructured_citation>Dobbs-Dixon, I., &amp; Agol, E.
(2013). Three-dimensional radiative-hydrodynamical simulations of the
highly irradiated short-period exoplanet HD 189733b. Monthly Notices of
the Royal Astronomical Society, 435(4), 3159–3168.
https://doi.org/10.1093/mnras/stt1509</unstructured_citation>
</citation>
<citation key="Way:2017">
<article_title>Resolving orbital and climate keys of earth
and extraterrestrial environments with dynamics (ROCKE-3D) 1.0: A
general circulation model for simulating the climates of rocky
planets</article_title>
<author>Way</author>
<journal_title>The Astrophysical Journal Supplement
Series</journal_title>
<issue>1</issue>
<volume>231</volume>
<doi>10.3847/1538-4365/aa7a06</doi>
<cYear>2017</cYear>
<unstructured_citation>Way, M. J., Aleinov, I., Amundsen, D.
S., Chandler, M., Clune, T., Del Genio, A. D., Fujii, Y., Kelley, M.,
Kiang, N. Y., Sohl, L., &amp; others. (2017). Resolving orbital and
climate keys of earth and extraterrestrial environments with dynamics
(ROCKE-3D) 1.0: A general circulation model for simulating the climates
of rocky planets. The Astrophysical Journal Supplement Series, 231(1),
12. https://doi.org/10.3847/1538-4365/aa7a06</unstructured_citation>
</citation>
<citation key="Ferrari:2011">
<article_title>What processes drive the ocean heat
transport?</article_title>
<author>Ferrari</author>
<journal_title>Ocean Modelling</journal_title>
<issue>3-4</issue>
<volume>38</volume>
<doi>10.1016/j.ocemod.2011.02.013</doi>
<cYear>2011</cYear>
<unstructured_citation>Ferrari, R., &amp; Ferreira, D.
(2011). What processes drive the ocean heat transport? Ocean Modelling,
38(3-4), 171–186.
https://doi.org/10.1016/j.ocemod.2011.02.013</unstructured_citation>
</citation>
<citation key="Brueshaber:2019">
<article_title>Dynamical Regimes of Giant Planet Polar
Vortices [Icarus 1 (2019) 46-61]</article_title>
<author>Brueshaber</author>
<journal_title>Icarus</journal_title>
<volume>357</volume>
<doi>10.1016/j.icarus.2020.114065</doi>
<cYear>2019</cYear>
<unstructured_citation>Brueshaber, S. R., Sayanagi, K. M.,
&amp; Dowling, T. E. (2019). Dynamical Regimes of Giant Planet Polar
Vortices [Icarus 1 (2019) 46-61]. Icarus, 357, 114065.
https://doi.org/10.1016/j.icarus.2020.114065</unstructured_citation>
</citation>
<citation key="Menou:2003">
<article_title>“Weather” Variability of Close-in Extrasolar
Giant Planets</article_title>
<author>Menou</author>
<journal_title>The Astrophysical Journal
Letters</journal_title>
<issue>2</issue>
<volume>587</volume>
<doi>10.1086/375015</doi>
<cYear>2003</cYear>
<unstructured_citation>Menou, K., Cho, J. Y.-K., Seager, S.,
&amp; Hansen, B. M. S. (2003). “Weather” Variability of Close-in
Extrasolar Giant Planets. The Astrophysical Journal Letters, 587(2),
L113–L116. https://doi.org/10.1086/375015</unstructured_citation>
</citation>
<citation key="Showman:2011">
<article_title>Equatorial Superrotation on Tidally Locked
Exoplanets</article_title>
<author>Showman</author>
<journal_title>The Astrophysical Journal</journal_title>
<issue>1</issue>
<volume>738</volume>
<doi>10.1088/0004-637X/738/1/71</doi>
<cYear>2011</cYear>
<unstructured_citation>Showman, A. P., &amp; Polvani, L. M.
(2011). Equatorial Superrotation on Tidally Locked Exoplanets. The
Astrophysical Journal, 738(1), 71.
https://doi.org/10.1088/0004-637X/738/1/71</unstructured_citation>
</citation>
<citation key="Langton:2008b">
<article_title>Hydrodynamic simulations of unevenly
irradiated Jovian planets</article_title>
<author>Langton</author>
<journal_title>The Astrophysical Journal</journal_title>
<issue>2</issue>
<volume>674</volume>
<doi>10.1086/523957</doi>
<cYear>2008</cYear>
<unstructured_citation>Langton, J., &amp; Laughlin, G.
(2008). Hydrodynamic simulations of unevenly irradiated Jovian planets.
The Astrophysical Journal, 674(2), 1106.
https://doi.org/10.1086/523957</unstructured_citation>
</citation>
<citation key="Perez-Becker:2013">
<article_title>Atmospheric Heat Redistribution on Hot
Jupiters</article_title>
<author>Perez-Becker</author>
<journal_title>The Astrophysical Journal</journal_title>
<issue>2</issue>
<volume>776</volume>
<doi>10.1088/0004-637X/776/2/134</doi>
<cYear>2013</cYear>
<unstructured_citation>Perez-Becker, D., &amp; Showman, A.
P. (2013). Atmospheric Heat Redistribution on Hot Jupiters. The
Astrophysical Journal, 776(2), 134.
https://doi.org/10.1088/0004-637X/776/2/134</unstructured_citation>
</citation>
<citation key="Harris:2020">
<article_title>Array programming with NumPy</article_title>
<author>Harris</author>
<journal_title>Nature</journal_title>
<issue>7825</issue>
<volume>585</volume>
<doi>10.1038/s41586-020-2649-2</doi>
<cYear>2020</cYear>
<unstructured_citation>Harris, C. R., Millman, K. J., Van
Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
Taylor, J., Berg, S., Smith, N. J., &amp; others. (2020). Array
programming with NumPy. Nature, 585(7825), 357–362.
https://doi.org/10.1038/s41586-020-2649-2</unstructured_citation>
</citation>
<citation key="Hunter:2007">
<article_title>Matplotlib: A 2D graphics
environment</article_title>
<author>Hunter</author>
<journal_title>Computing in Science &amp;
Engineering</journal_title>
<issue>3</issue>
<volume>9</volume>
<doi>10.1109/MCSE.2007.55</doi>
<cYear>2007</cYear>
<unstructured_citation>Hunter, J. D. (2007). Matplotlib: A
2D graphics environment. Computing in Science &amp; Engineering, 9(3),
90–95. https://doi.org/10.1109/MCSE.2007.55</unstructured_citation>
</citation>
<citation key="Virtanen:2020">
<article_title>SciPy 1.0: Fundamental algorithms for
scientific computing in Python</article_title>
<author>Virtanen</author>
<journal_title>Nature methods</journal_title>
<issue>3</issue>
<volume>17</volume>
<doi>10.1038/s41592-019-0686-2</doi>
<cYear>2020</cYear>
<unstructured_citation>Virtanen, P., Gommers, R., Oliphant,
T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., &amp; others. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nature
Methods, 17(3), 261–272.
https://doi.org/10.1038/s41592-019-0686-2</unstructured_citation>
</citation>
<citation key="Gelb:2001">
<article_title>Spectral viscosity for shallow water
equations in spherical geometry</article_title>
<author>Gelb</author>
<journal_title>Monthly Weather Review</journal_title>
<issue>9</issue>
<volume>129</volume>
<doi>10.1175/1520-0493(2001)129&lt;2346:svfswe&gt;2.0.co;2</doi>
<cYear>2001</cYear>
<unstructured_citation>Gelb, A., &amp; Gleeson, J. P.
(2001). Spectral viscosity for shallow water equations in spherical
geometry. Monthly Weather Review, 129(9), 2346–2360.
https://doi.org/10.1175/1520-0493(2001)129&lt;2346:svfswe&gt;2.0.co;2</unstructured_citation>
</citation>
<citation key="Burns:2020">
<article_title>Dedalus: A flexible framework for numerical
simulations with spectral methods</article_title>
<author>Burns</author>
<journal_title>Physical Review Research</journal_title>
<issue>2</issue>
<volume>2</volume>
<doi>10.1103/PhysRevResearch.2.023068</doi>
<cYear>2020</cYear>
<unstructured_citation>Burns, K. J., Vasil, G. M., Oishi, J.
S., Lecoanet, D., &amp; Brown, B. P. (2020). Dedalus: A flexible
framework for numerical simulations with spectral methods. Physical
Review Research, 2(2), 023068.
https://doi.org/10.1103/PhysRevResearch.2.023068</unstructured_citation>
</citation>
<citation key="Dunne:2020">
<article_title>The GFDL earth system model version 4.1
(GFDL-ESM 4.1): Overall coupled model description and simulation
characteristics</article_title>
<author>Dunne</author>
<journal_title>Journal of Advances in Modeling Earth
Systems</journal_title>
<issue>11</issue>
<volume>12</volume>
<doi>10.1029/2019ms002015</doi>
<cYear>2020</cYear>
<unstructured_citation>Dunne, J., Horowitz, L., Adcroft, A.,
Ginoux, P., Held, I., John, J., Krasting, J., Malyshev, S., Naik, V.,
Paulot, F., &amp; others. (2020). The GFDL earth system model version
4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation
characteristics. Journal of Advances in Modeling Earth Systems, 12(11),
e2019MS002015.
https://doi.org/10.1029/2019ms002015</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
685 changes: 685 additions & 0 deletions joss.04872/10.21105.joss.04872.jats

Large diffs are not rendered by default.

Binary file added joss.04872/10.21105.joss.04872.pdf
Binary file not shown.
Binary file added joss.04872/media/timescale_example-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 854b3bf

Please sign in to comment.