Skip to content

Commit

Permalink
Merge pull request #6241 from openjournals/joss.07321
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Dec 10, 2024
2 parents 431486c + c6fe83f commit 6a66049
Show file tree
Hide file tree
Showing 5 changed files with 612 additions and 0 deletions.
193 changes: 193 additions & 0 deletions joss.07321/10.21105.joss.07321.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241210090034-df3f272d935dc761fc27dbc6137c4ed92d4c13ea</doi_batch_id>
<timestamp>20241210090034</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>104</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Bayesian model reconstruction based on spectral line observations with pomme</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Frederik</given_name>
<surname>De Ceuster</surname>
<affiliations>
<institution><institution_name>Institute of Astronomy, Department of Physics &amp; Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0001-5887-8498</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Thomas</given_name>
<surname>Ceulemans</surname>
<affiliations>
<institution><institution_name>Institute of Astronomy, Department of Physics &amp; Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-7808-9039</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Leen</given_name>
<surname>Decin</surname>
<affiliations>
<institution><institution_name>Institute of Astronomy, Department of Physics &amp; Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-5342-8612</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Taissa</given_name>
<surname>Danilovich</surname>
<affiliations>
<institution><institution_name>School of Physics &amp; Astronomy, Monash University, Clayton, Victoria, Australia</institution_name></institution>
<institution><institution_name>ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Clayton, Victoria, Australia</institution_name></institution>
<institution><institution_name>Institute of Astronomy, Department of Physics &amp; Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-1283-6038</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jeremy</given_name>
<surname>Yates</surname>
<affiliations>
<institution><institution_name>Department of Computer Science, University College London, WC1E 6EA, London, United Kingdom</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0003-1954-8749</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>10</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7321</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07321</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14217136</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7321</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07321</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07321</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07321.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="DeCeuster2022">
<article_title>3D line radiative transfer &amp; synthetic observations with Magritte</article_title>
<author>De Ceuster</author>
<journal_title>The Journal of Open Source Software</journal_title>
<issue>71</issue>
<volume>7</volume>
<doi>10.21105/joss.03905</doi>
<cYear>2022</cYear>
<unstructured_citation>De Ceuster, F., Ceulemans, T., Srivastava, A., Homan, W., Bolte, J., Yates, J., Decin, L., Boyle, P., &amp; Hetherington, J. (2022). 3D line radiative transfer &amp; synthetic observations with Magritte. The Journal of Open Source Software, 7(71), 3905. https://doi.org/10.21105/joss.03905</unstructured_citation>
</citation>
<citation key="DeCeuster2024">
<article_title>Bayesian model reconstruction based on spectral line observations</article_title>
<author>De Ceuster</author>
<journal_title>The Astrophysical Journal Supplement Series</journal_title>
<issue>2</issue>
<volume>275</volume>
<doi>10.3847/1538-4365/ad89a2</doi>
<cYear>2024</cYear>
<unstructured_citation>De Ceuster, F., Ceulemans, T., Decin, L., Danilovich, T., &amp; Yates, J. (2024). Bayesian model reconstruction based on spectral line observations. The Astrophysical Journal Supplement Series, 275(2), 44. https://doi.org/10.3847/1538-4365/ad89a2</unstructured_citation>
</citation>
<citation key="Matsumoto2023">
<article_title>Self-consistent dust and non-LTE line radiative transfer with SKIRT</article_title>
<author>Matsumoto</author>
<journal_title>Astronomy &amp; Astrophysics</journal_title>
<volume>678</volume>
<doi>10.1051/0004-6361/202347376</doi>
<cYear>2023</cYear>
<unstructured_citation>Matsumoto, K., Camps, P., Baes, M., De Ceuster, F., Wada, K., Nakagawa, T., &amp; Nagamine, K. (2023). Self-consistent dust and non-LTE line radiative transfer with SKIRT. Astronomy &amp; Astrophysics, 678, A175. https://doi.org/10.1051/0004-6361/202347376</unstructured_citation>
</citation>
<citation key="Coenegrachts2023">
<article_title>The unusual 3D distribution of NaCl around the asymptotic giant branch star IK Tau</article_title>
<author>Coenegrachts</author>
<journal_title>Astronomy &amp; Astrophysics</journal_title>
<volume>678</volume>
<doi>10.1051/0004-6361/202346116</doi>
<cYear>2023</cYear>
<unstructured_citation>Coenegrachts, A., Danilovich, T., De Ceuster, F., &amp; Decin, L. (2023). The unusual 3D distribution of NaCl around the asymptotic giant branch star IK Tau. Astronomy &amp; Astrophysics, 678, A85. https://doi.org/10.1051/0004-6361/202346116</unstructured_citation>
</citation>
<citation key="Danilovich2024">
<article_title>Chemical tracers of a highly eccentric AGB-main-sequence star binary</article_title>
<author>Danilovich</author>
<journal_title>Nature Astronomy</journal_title>
<volume>8</volume>
<doi>10.1038/s41550-023-02154-y</doi>
<cYear>2024</cYear>
<unstructured_citation>Danilovich, T., Malfait, J., Van de Sande, M., Montargès, M., Kervella, P., De Ceuster, F., Coenegrachts, A., Millar, T. J., Richards, A. M. S., Decin, L., Gottlieb, C. A., Pinte, C., De Beck, E., Price, D. J., Wong, K. T., Bolte, J., Menten, K. M., Baudry, A., de Koter, A., … Zijlstra, A. (2024). Chemical tracers of a highly eccentric AGB-main-sequence star binary. Nature Astronomy, 8, 308–327. https://doi.org/10.1038/s41550-023-02154-y</unstructured_citation>
</citation>
<citation key="Paszke2017">
<article_title>Automatic differentiation in PyTorch</article_title>
<author>Paszke</author>
<journal_title>NIPS 2017 Autodiff Workshop</journal_title>
<cYear>2017</cYear>
<unstructured_citation>Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., &amp; Lerer, A. (2017). Automatic differentiation in PyTorch. NIPS 2017 Autodiff Workshop. https://openreview.net/forum?id=BJJsrmfCZ</unstructured_citation>
</citation>
<citation key="Paszke2019">
<article_title>PyTorch: An imperative style, high-performance deep learning library</article_title>
<author>Paszke</author>
<journal_title>Advances in Neural Information Processing Systems 32 (NeurIPS 2019)</journal_title>
<volume>32</volume>
<doi>10.48550/arXiv.1912.01703</doi>
<cYear>2019</cYear>
<unstructured_citation>Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 32. https://doi.org/10.48550/arXiv.1912.01703</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07321/10.21105.joss.07321.pdf
Binary file not shown.
Loading

0 comments on commit 6a66049

Please sign in to comment.