Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Improve] use fvcore to calculate FLOPs #2045

Open
wants to merge 2 commits into
base: dev-1.x
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 14 additions & 3 deletions mmpose/apis/inferencers/pose2d_inferencer.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@

import mmcv
import numpy as np
from mmdet.apis.det_inferencer import DetInferencer
from mmengine.config import Config, ConfigDict
from mmengine.infer.infer import ModelType
from mmengine.registry import init_default_scope
Expand All @@ -17,6 +16,12 @@
from .base_mmpose_inferencer import BaseMMPoseInferencer
from .utils import default_det_models

try:
from mmdet.apis.det_inferencer import DetInferencer
mmdet_available = True
except (ImportError, ModuleNotFoundError):
mmdet_available = False

InstanceList = List[InstanceData]
InputType = Union[str, np.ndarray]
InputsType = Union[InputType, Sequence[InputType]]
Expand Down Expand Up @@ -94,8 +99,14 @@ def __init__(self,
det_model, det_weights, det_cat_ids = det_info[
'model'], det_info['weights'], det_info['cat_ids']

self.detector = DetInferencer(
det_model, det_weights, device=device)
if mmdet_available:
self.detector = DetInferencer(
det_model, det_weights, device=device)
else:
raise RuntimeError(
'MMDetection is required to build inferencers '
'for top-down pose estimation models.')

if isinstance(det_cat_ids, (tuple, list)):
self.det_cat_ids = det_cat_ids
else:
Expand Down
2 changes: 1 addition & 1 deletion mmpose/models/pose_estimators/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ def _load_metainfo(metainfo: dict = None) -> dict:

def forward(self,
inputs: torch.Tensor,
data_samples: OptSampleList,
data_samples: OptSampleList = None,
mode: str = 'tensor') -> ForwardResults:
"""The unified entry for a forward process in both training and test.

Expand Down
118 changes: 44 additions & 74 deletions tools/analysis_tools/get_flops.py
Original file line number Diff line number Diff line change
@@ -1,111 +1,81 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
from functools import partial

import torch
from mmengine.config import DictAction
from mmengine.config import Config, DictAction

from mmpose.apis.inference import init_model
from mmpose.registry import MODELS
from mmpose.utils import register_all_modules

try:
from mmcv.cnn import get_model_complexity_info
from mmengine.analysis import get_model_complexity_info
except ImportError:
raise ImportError('Please upgrade mmcv to >0.6.2')


def parse_args():
parser = argparse.ArgumentParser(description='Train a recognizer')
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--device',
default='cuda:0',
help='Device used for model initialization')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[256, 192],
default=[1280, 800],
help='input image size')
parser.add_argument(
'--input-constructor',
'-c',
type=str,
choices=['none', 'batch'],
default='none',
help='If specified, it takes a callable method that generates '
'input. Otherwise, it will generate a random tensor with '
'input shape to calculate FLOPs.')
parser.add_argument(
'--batch-size', '-b', type=int, default=1, help='input batch size')
parser.add_argument(
'--not-print-per-layer-stat',
'-n',
action='store_true',
help='Whether to print complexity information'
'for each layer in a model')
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args


def batch_constructor(flops_model, batch_size, input_shape):
"""Generate a batch of tensors to the model."""
batch = {}

inputs = torch.ones(()).new_empty(
(batch_size, *input_shape),
dtype=next(flops_model.parameters()).dtype,
device=next(flops_model.parameters()).device)

batch['inputs'] = inputs
return batch


def main():

register_all_modules()
args = parse_args()

if len(args.shape) == 1:
input_shape = (3, args.shape[0], args.shape[0])
h = w = args.shape[0]
elif len(args.shape) == 2:
input_shape = (3, ) + tuple(args.shape)
h, w = args.shape
else:
raise ValueError('invalid input shape')
input_shape = (3, h, w)

model = init_model(
args.config,
checkpoint=None,
device=args.device,
cfg_options=args.cfg_options)
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)

if args.input_constructor == 'batch':
input_constructor = partial(batch_constructor, model, args.batch_size)
else:
input_constructor = None
model = MODELS.build(cfg.model)
model.eval()

analysis_results = get_model_complexity_info(
model, input_shape, show_table=True, show_arch=False)

# ayalysis_results = {
# 'flops': flops,
# 'flops_str': flops_str,
# 'activations': activations,
# 'activations_str': activations_str,
# 'params': params,
# 'params_str': params_str,
# 'out_table': complexity_table,
# 'out_arch': complexity_arch
# }

if hasattr(model, '_forward'):
model.forward = model._forward
else:
raise NotImplementedError(
'FLOPs counter is currently not currently supported with {}'.
format(model.__class__.__name__))

flops, params = get_model_complexity_info(
model,
input_shape,
input_constructor=input_constructor,
print_per_layer_stat=(not args.not_print_per_layer_stat))
split_line = '=' * 30
input_shape = (args.batch_size, ) + input_shape
print(f'{split_line}\nInput shape: {input_shape}\n'
f'Flops: {flops}\nParams: {params}\n{split_line}')
f'Flops: {analysis_results["flops"]}\n'
f'Params: {analysis_results["params"]}\n{split_line}')

print(analysis_results['activations'])
# print(analysis_results['complexity_table'])
# print(complexity_str)
print('!!!Please be cautious if you use the results in papers. '
'You may need to check if all ops are supported and verify that the '
'flops computation is correct.')
Expand Down
106 changes: 106 additions & 0 deletions tools/analysis_tools/get_flops1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse

import torch
from mmengine.config import DictAction

from mmpose.apis.inference import init_model

try:
# from mmcv.cnn import get_model_complexity_info
from mmengine.analysis import get_model_complexity_info
except ImportError:
raise ImportError('Please upgrade mmcv to >0.6.2')


def parse_args():
parser = argparse.ArgumentParser(description='Train a recognizer')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--device', default='cpu', help='Device used for model initialization')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[256, 192],
help='input image size')
parser.add_argument(
'--input-constructor',
'-c',
type=str,
choices=['none', 'batch'],
default='none',
help='If specified, it takes a callable method that generates '
'input. Otherwise, it will generate a random tensor with '
'input shape to calculate FLOPs.')
parser.add_argument(
'--batch-size', '-b', type=int, default=1, help='input batch size')
parser.add_argument(
'--not-print-per-layer-stat',
'-n',
action='store_true',
help='Whether to print complexity information'
'for each layer in a model')
args = parser.parse_args()
return args


def batch_constructor(flops_model, batch_size, input_shape):
"""Generate a batch of tensors to the model."""
batch = {}

inputs = torch.ones(()).new_empty(
(batch_size, *input_shape),
dtype=next(flops_model.parameters()).dtype,
device=next(flops_model.parameters()).device)

batch['inputs'] = inputs
return batch


def main():

args = parse_args()

if len(args.shape) == 1:
input_shape = (3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (3, ) + tuple(args.shape)
else:
raise ValueError('invalid input shape')

model = init_model(
args.config,
checkpoint=None,
device=args.device,
cfg_options=args.cfg_options)

if hasattr(model, '_forward'):
model.forward = model._forward
else:
raise NotImplementedError(
'FLOPs counter is currently not currently supported with {}'.
format(model.__class__.__name__))

analysis_results = get_model_complexity_info(model, input_shape)
flops = analysis_results['flops_str']
params = analysis_results['params_str']
split_line = '=' * 30
input_shape = (args.batch_size, ) + input_shape
print(f'{split_line}\nInput shape: {input_shape}\n'
f'Flops: {flops}\nParams: {params}\n{split_line}')
print('!!!Please be cautious if you use the results in papers. '
'You may need to check if all ops are supported and verify that the '
'flops computation is correct.')


if __name__ == '__main__':
main()