Skip to content

Commit

Permalink
[CodeCamp2023-533] Migration Deepfashion topdown heatmap algorithms t…
Browse files Browse the repository at this point in the history
…o 1.x (#2597)
  • Loading branch information
xin-li-67 authored Aug 10, 2023
1 parent a609e93 commit 94d4f50
Show file tree
Hide file tree
Showing 26 changed files with 1,591 additions and 0 deletions.
42 changes: 42 additions & 0 deletions configs/fashion_2d_keypoint/topdown_heatmap/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# Top-down heatmap-based pose estimation

Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in [Simple Baselines for Human Pose Estimation and Tracking](http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html).

<div align=center>
<img src="https://user-images.githubusercontent.com/15977946/146522977-5f355832-e9c1-442f-a34f-9d24fb0aefa8.png" height=400>
</div>

## Results and Models

### DeepFashion Dataset

Results on DeepFashion dataset with ResNet backbones:

| Model | Input Size | [email protected] | AUC | EPE | Details and Download |
| :-----------------: | :--------: | :-----: | :--: | :--: | :----------------------------------------------------------: |
| HRNet-w48-UDP-Upper | 256x192 | 96.1 | 60.9 | 15.1 | [hrnet_deepfashion.md](./deepfashion/hrnet_deepfashion.md) |
| HRNet-w48-UDP-Lower | 256x192 | 97.8 | 76.1 | 8.9 | [hrnet_deepfashion.md](./deepfashion/hrnet_deepfashion.md) |
| HRNet-w48-UDP-Full | 256x192 | 98.3 | 67.3 | 11.7 | [hrnet_deepfashion.md](./deepfashion/hrnet_deepfashion.md) |
| ResNet-50-Upper | 256x192 | 95.4 | 57.8 | 16.8 | [resnet_deepfashion.md](./deepfashion/resnet_deepfashion.md) |
| ResNet-50-Lower | 256x192 | 96.5 | 74.4 | 10.5 | [resnet_deepfashion.md](./deepfashion/resnet_deepfashion.md) |
| ResNet-50-Full | 256x192 | 97.7 | 66.4 | 12.7 | [resnet_deepfashion.md](./deepfashion/resnet_deepfashion.md) |

### DeepFashion2 Dataset

Results on DeepFashion2 dataset

| Model | Input Size | [email protected] | AUC | EPE | Details and Download |
| :-----------------------------: | :--------: | :-----: | :---: | :--: | :-----------------------------------------------------------: |
| ResNet-50-Short-Sleeved-Shirt | 256x192 | 0.988 | 0.703 | 10.2 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Long-Sleeved-Shirt | 256x192 | 0.973 | 0.587 | 16.6 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Short-Sleeved-Outwear | 256x192 | 0.966 | 0.408 | 24.0 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Long-Sleeved-Outwear | 256x192 | 0.987 | 0.517 | 18.1 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Vest | 256x192 | 0.981 | 0.643 | 12.7 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Sling | 256x192 | 0.940 | 0.557 | 21.6 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Shorts | 256x192 | 0.975 | 0.682 | 12.4 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Trousers | 256x192 | 0.973 | 0.625 | 14.8 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Skirt | 256x192 | 0.952 | 0.653 | 16.6 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Short-Sleeved-Dress | 256x192 | 0.980 | 0.603 | 15.6 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Long-Sleeved-Dress | 256x192 | 0.976 | 0.518 | 20.1 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Vest-Dress | 256x192 | 0.980 | 0.600 | 16.0 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
| ResNet-50-Sling-Dress | 256x192 | 0.967 | 0.544 | 19.5 | [res50_deepfashion2.md](./deepfashion2/res50_deepfashion2.md) |
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
<!-- [ALGORITHM] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_CVPR_2019/html/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.html">HRNet (CVPR'2019)</a></summary>

```bibtex
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
```

</details>

<!-- [BACKBONE] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_CVPR_2020/html/Huang_The_Devil_Is_in_the_Details_Delving_Into_Unbiased_Data_CVPR_2020_paper.html">UDP (CVPR'2020)</a></summary>

```bibtex
@InProceedings{Huang_2020_CVPR,
author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
```

</details>

<!-- [DATASET] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_cvpr_2016/html/Liu_DeepFashion_Powering_Robust_CVPR_2016_paper.html">DeepFashion (CVPR'2016)</a></summary>

```bibtex
@inproceedings{liuLQWTcvpr16DeepFashion,
author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou},
title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations},
booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}
```

</details>

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-319-46475-6_15">DeepFashion (ECCV'2016)</a></summary>

```bibtex
@inproceedings{liuYLWTeccv16FashionLandmark,
author = {Liu, Ziwei and Yan, Sijie and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
title = {Fashion Landmark Detection in the Wild},
booktitle = {European Conference on Computer Vision (ECCV)},
month = {October},
year = {2016}
}
```

</details>

Results on DeepFashion val set

| Set | Arch | Input Size | [email protected] | AUC | EPE | ckpt | log |
| :---- | :-------------------------------------------------------: | :--------: | :-----: | :--: | :--: | :-------------------------------------------------------: | :------------------------------------------------------: |
| upper | [pose_hrnet_w48_udp](td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_uppder-256x192.py) | 256x192 | 96.1 | 60.9 | 15.1 | [ckpt](https://download.openmmlab.com/mmpose/v1/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_upper-256x192-de7c0eb1_20230810.pth) | [log](https://download.openmmlab.com/mmpose/v1/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_upper-256x192-de7c0eb1_20230810.log) |
| lower | [pose_hrnet_w48_udp](td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_lower-256x192.py) | 256x192 | 97.8 | 76.1 | 8.9 | [ckpt](https://download.openmmlab.com/mmpose/v1/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_lower-256x192-ddaf747d_20230810.pth) | [log](https://download.openmmlab.com/mmpose/v1/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_lower-256x192-ddaf747d_20230810.log) |
| full | [pose_hrnet_w48_udp](td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_full-256x192.py) | 256x192 | 98.3 | 67.3 | 11.7 | [ckpt](https://download.openmmlab.com/mmpose/v1/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_full-256x192-7ab504c7_20230810.pth) | [log](https://download.openmmlab.com/mmpose/v1/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_full-256x192-7ab504c7_20230810.log) |

Note: Due to the time constraints, we have only trained resnet50 models. We warmly welcome any contributions if you can successfully reproduce the results from the paper!
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
Collections:
- Name: HRNet
Paper:
Title: Deep high-resolution representation learning for human pose estimation
URL: http://openaccess.thecvf.com/content_CVPR_2019/html/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.html
README: https://github.com/open-mmlab/mmpose/blob/main/docs/src/papers/backbones/hrnet.md
- Name: UDP
Paper:
Title: 'The Devil Is in the Details: Delving Into Unbiased Data Processing for
Human Pose Estimation'
URL: http://openaccess.thecvf.com/content_CVPR_2020/html/Huang_The_Devil_Is_in_the_Details_Delving_Into_Unbiased_Data_CVPR_2020_paper.html
README: https://github.com/open-mmlab/mmpose/blob/main/docs/src/papers/techniques/udp.md
Models:
- Config: configs/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_lower-256x192.py
In Collection: HRNet, UDP
Metadata:
Architecture: &id001
- HRNet
- UDP
Training Data: DeepFashion
Name: td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_lower-256x192
Results:
- Dataset: DeepFashion
Metrics:
AUC: 76.1
EPE: 8.9
[email protected]: 97.8
Task: Fashion 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/v1/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_lower-256x192-ddaf747d_20230810.pth
- Config: configs/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_upper-256x192.py
In Collection: HRNet, UDP
Metadata:
Architecture: *id001
Training Data: DeepFashion
Name: td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_upper-256x192
Results:
- Dataset: DeepFashion
Metrics:
AUC: 60.9
EPE: 15.1
[email protected]: 96.1
Task: Fashion 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/v1/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_upper-256x192-de7c0eb1_20230810.pth
- Config: configs/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_full-256x192.py
In Collection: HRNet, UDP
Metadata:
Architecture: *id001
Training Data: DeepFashion
Name: td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_full-256x192
Results:
- Dataset: DeepFashion
Metrics:
AUC: 67.3
EPE: 11.7
[email protected]: 98.3
Task: Fashion 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/v1/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_hrnet-w48_udp_8xb32-210e_deepfashion_full-256x192-7ab504c7_20230810.pth
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
<!-- [ALGORITHM] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html">SimpleBaseline2D (ECCV'2018)</a></summary>

```bibtex
@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
```

</details>

<!-- [BACKBONE] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html">ResNet (CVPR'2016)</a></summary>

```bibtex
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
```

</details>

<!-- [DATASET] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_cvpr_2016/html/Liu_DeepFashion_Powering_Robust_CVPR_2016_paper.html">DeepFashion (CVPR'2016)</a></summary>

```bibtex
@inproceedings{liuLQWTcvpr16DeepFashion,
author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou},
title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations},
booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}
```

</details>

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-319-46475-6_15">DeepFashion (ECCV'2016)</a></summary>

```bibtex
@inproceedings{liuYLWTeccv16FashionLandmark,
author = {Liu, Ziwei and Yan, Sijie and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
title = {Fashion Landmark Detection in the Wild},
booktitle = {European Conference on Computer Vision (ECCV)},
month = {October},
year = {2016}
}
```

</details>

Results on DeepFashion val set

| Set | Arch | Input Size | [email protected] | AUC | EPE | ckpt | log |
| :---- | :-------------------------------------------------------: | :--------: | :-----: | :--: | :--: | :-------------------------------------------------------: | :------------------------------------------------------: |
| upper | [pose_resnet_50](td-hm_res50_8xb64-210e_deepfashion_upper-256x192.py) | 256x192 | 95.4 | 57.8 | 16.8 | [ckpt](https://download.openmmlab.com/mmpose/fashion/resnet/res50_deepfashion_upper_256x192-41794f03_20210124.pth) | [log](https://download.openmmlab.com/mmpose/fashion/resnet/res50_deepfashion_upper_256x192_20210124.log.json) |
| lower | [pose_resnet_50](td-hm_res50_8xb64-210e_deepfashion_lower-256x192.py) | 256x192 | 96.5 | 74.4 | 10.5 | [ckpt](https://download.openmmlab.com/mmpose/fashion/resnet/res50_deepfashion_lower_256x192-1292a839_20210124.pth) | [log](https://download.openmmlab.com/mmpose/fashion/resnet/res50_deepfashion_lower_256x192_20210124.log.json) |
| full | [pose_resnet_50](td-hm_res50_8xb64-210e_deepfashion_full-256x192.py) | 256x192 | 97.7 | 66.4 | 12.7 | [ckpt](https://download.openmmlab.com/mmpose/fashion/resnet/res50_deepfashion_full_256x192-0dbd6e42_20210124.pth) | [log](https://download.openmmlab.com/mmpose/fashion/resnet/res50_deepfashion_full_256x192_20210124.log.json) |

Note: Due to the time constraints, we have only trained resnet50 models. We warmly welcome any contributions if you can successfully reproduce the results from the paper!
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
Collections:
- Name: SimpleBaseline2D
Paper:
Title: Simple baselines for human pose estimation and tracking
URL: http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html
README: https://github.com/open-mmlab/mmpose/blob/master/docs/en/papers/algorithms/simplebaseline2d.md
Models:
- Config: configs/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_res50_8xb64-210e_deepfashion_upper-256x192.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: &id001
- SimpleBaseline2D
- ResNet
Training Data: DeepFashion
Name: td-hm_res50_8xb64-210e_deepfashion_upper-256x192
Results:
- Dataset: DeepFashion
Metrics:
AUC: 57.8
EPE: 16.8
[email protected]: 95.4
Task: Fashion 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/fashion/resnet/res50_deepfashion_upper_256x192-41794f03_20210124.pth
- Config: configs/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_res50_8xb64-210e_deepfashion_lower-256x192.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: DeepFashion
Name: td-hm_res50_8xb64-210e_deepfashion_lower-256x192
Results:
- Dataset: DeepFashion
Metrics:
AUC: 74.4
EPE: 96.5
[email protected]: 10.5
Task: Fashion 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/fashion/resnet/res50_deepfashion_lower_256x192-1292a839_20210124.pth
- Config: configs/fashion_2d_keypoint/topdown_heatmap/deepfashion/td-hm_res50_8xb64-210e_deepfashion_full-256x192.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: DeepFashion
Name: td-hm_res50_8xb64-210e_deepfashion_full-256x192
Results:
- Dataset: DeepFashion
Metrics:
AUC: 66.4
EPE: 12.7
[email protected]: 97.7
Task: Fashion 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/fashion/resnet/res50_deepfashion_full_256x192-0dbd6e42_20210124.pth
Loading

0 comments on commit 94d4f50

Please sign in to comment.